

Village of Northbrook Climate Vulnerability Assessment

August 2020

Prepared by:

Table of Contents

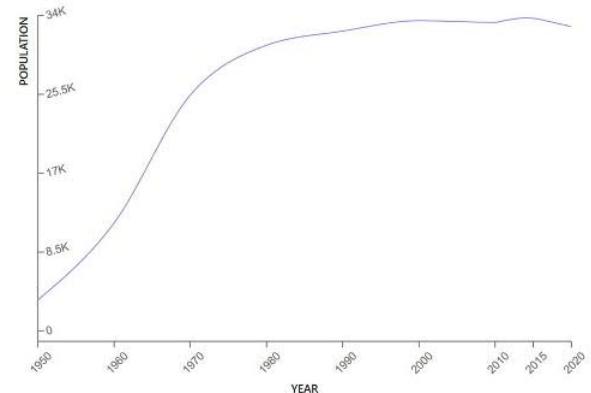
- Section 1: Introduction**
- Section 2: Climate Change In The Midwest**
- Section 3: Climate Change In Illinois**
- Section 4: Local Climate Change**
- Section 5: Village On The Move**
- Section 6: Climate Risks To Population**
- Section 7: Climate Impact Multipliers**
 - Heat Island
 - Tree Canopy
 - Flood Vulnerabilities
 - Water Stress
- Section 8: Climate Resilience Indicators**
 - Economic Stress
 - Health
 - EPA Environmental Justice Screen
 - EPA Social Vulnerability Index
 - MPCA Environmental Justice Screen
 - Housing Burden
- Section 9: Vulnerable Populations**
 - Children
 - Older Adults
 - Individuals With Disabilities
 - Individuals Under Economic Stress
 - People of Color and Limited English Speakers
 - At-Risk Workers
 - Individuals with Possible Food Insecurity
 - Composite Vulnerabilities
 - Comparison of Vulnerable Populations
- Section 10: Findings**
- Section 11: Recommendations**
- Section 12: Potential Funding**
- Appendix 1 Local Climate Risks To Environment**
- Appendix 2 Climate Adaptive Tree Species**
- Appendix 3 Data References and Resources**
- Appendix 4 Glossary of Climate Adaptation and Vulnerability Terms**

Section 01

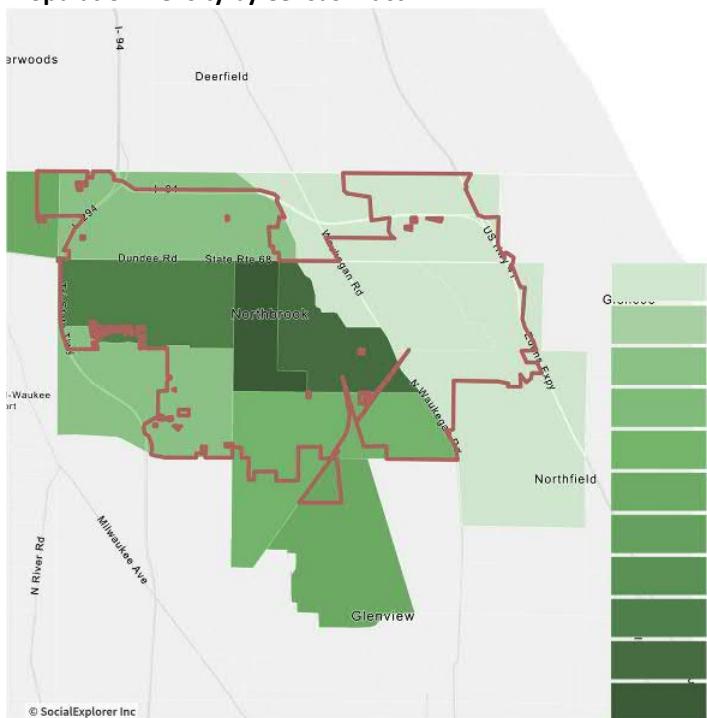
Introduction

Introduction

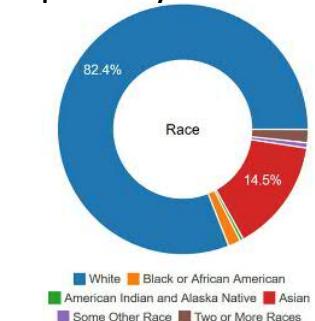
Climate change is a global phenomenon that creates local impacts. Two changes to Illinois's climate are occurring already: shorter winters with fewer cold extremes, and more heavy and extreme precipitation. In the future, there is relatively high confidence that those two changes will continue to increase in frequency and intensity, and also that Illinois will begin to experience heat extremes beyond the historical variability of the climate. There is somewhat lower confidence that drought, and also tornadoes, hail and straight-line wind will increase in frequency and/or intensity as a result of climate change in the future.

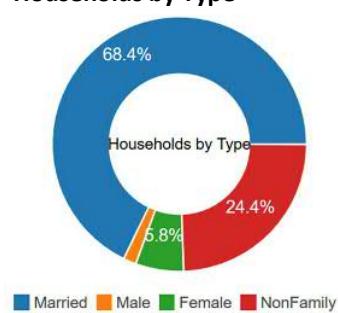

While the science behind climate change is complex, many of the solutions to reducing impacts are already a part of Northbrook municipal government expertise. In many instances, responding to climate change does not require large scale changes to municipal operations, but simply requires adapting existing plans and policies to incorporate knowledge about changing levels of risk across key areas such as public health, infrastructure planning and emergency management.

Incorporating this knowledge not only protects our communities from growing risk, but climate adaptation strategies can also increase jobs, improve public health and the overall livability of our communities. Strategies which strengthen resilience in time of emergency also help communities thrive even more during good times.


Village of Northbrook IL

Area	13.2 sq mi
Parks, Recreation, & Preserves	509 Acres (Northbrook Park District)
Population (2018)	33,170
Density	2,512.9 / sq mi
Households	12,492
Employment	38,120


Population History


Population Density by Census Tract

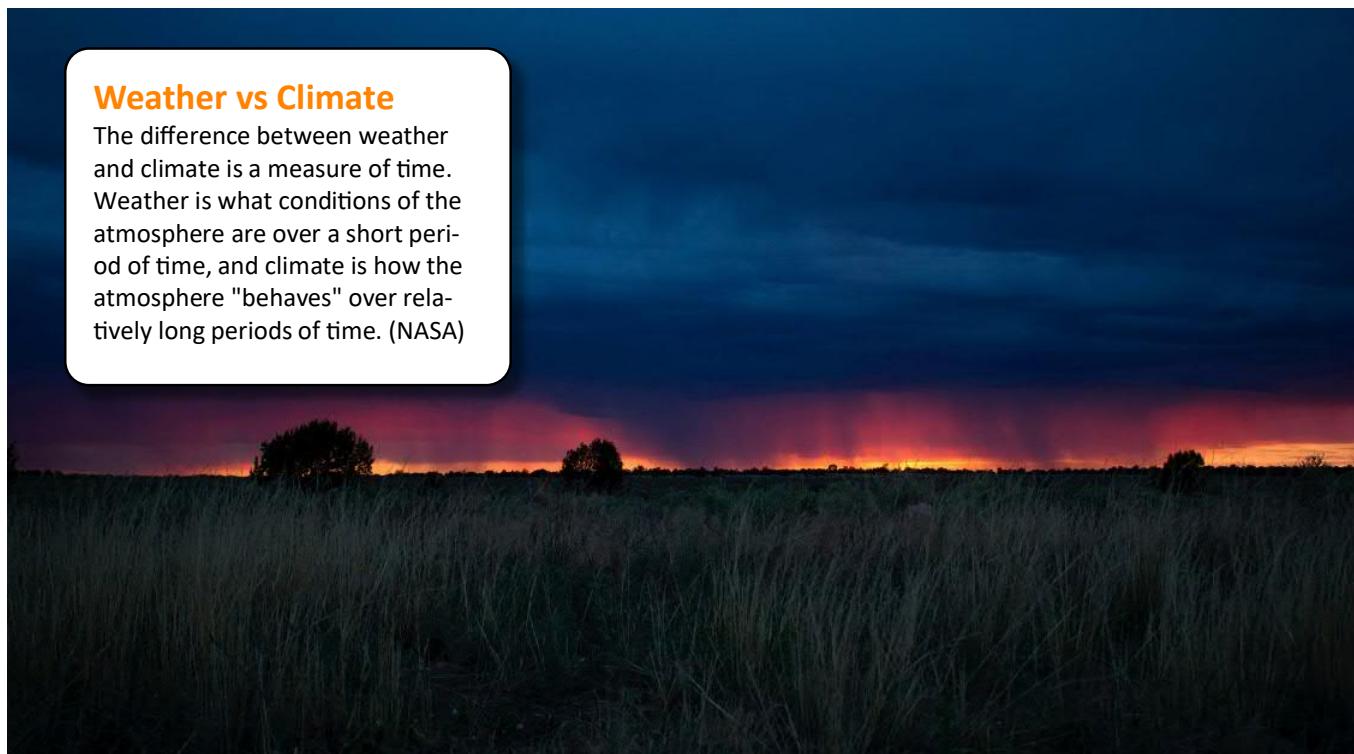
Population by Race

Households by Type

Introduction

What is Climate Change Vulnerability?

According to the Intergovernmental Panel on Climate Change (IPCC), vulnerability is “the degree to which a system is susceptible to, or unable to cope with, adverse effects of climate change, including climate variability and extremes”. Vulnerability is a function of both impacts (the effects of climate change and variability on a given system or resource) as well as adaptive capacity (the ability of the economy, infrastructure, resources, or population to effectively adapt to such events and changes).


Why Study Climate Change Vulnerability?

Increases in the global surface temperature and changes in precipitation levels and patterns are expected to continue and intensify for decades, regardless of mitigation strategies currently being implemented. In turn, these changes in climate have impacts on the economy and health of local communities.

Weather and climate shape our economy. Temperature impacts everything from the amount of energy consumed to heat and cool homes and offices to the ability for some workers to work outside. Temperature and precipitation levels not only determine how much water we have to drink, but also the performance of entire economic sectors, from agriculture to recreation and tourism. Extreme weather events, like tornadoes, hail storms, droughts, and inland flooding can be particularly damaging. In the last ten years alone, extreme weather events have cost Illinois and the Midwest \$96 billion in damage and resulting in 440 deaths. (NOAA National Centers for Environmental Information).

In addition, climate conditions effect the quality of life and life safety of communities – particularly those populations especially sensitive to climate impacts. Extreme weather events linked to climate change have the potential to harm community member health in numerous ways. Rising temperatures, for example, can result in a longer-than-average allergy season, erode air quality, and prolong the stay and increase the population of insects increasing the risk of vector-borne diseases. Climate impacts also exacerbate additional economic challenges that can directly impact the ability of at-risk populations to cope with the additional risks exacerbated by climate conditions while creating more exposure to dangerous living/working conditions and poor nutrition.

Strengthening community resilience is rooted in an on-going assessment of potential vulnerabilities, anticipating potential climate impacts, development and implementation of strategies to address those vulnerabilities, and in communication and outreach to the members of the community.

About This Report

This Climate Vulnerability Assessment has been developed in conjunction with the Village of Northbrook Climate Action Plan project effort. This report seeks to:

- Increase awareness of potential climate impacts and population vulnerabilities.
- Increase inclusion of climate adaptation dialogue within Village planning and decision making processes.
- Strengthen adaptive capacity based on the best available information on regional climate change projections and impacts.
- Outline priority risks, and vulnerabilities in support of establishing strategies and actions in the Village's future Climate Planning efforts.
- Prevent or reduce the risks to populations most vulnerable to the impacts of climate change.

The Population Vulnerability Assessment portion of this report describes how climate affects the region today, the changes and impacts expected over the coming decades, and identifies population vulnerabilities of the members of the community.

Section 02

Climate Change In
The Midwest

Climate Change in The Midwest

According to the United States National Climate Assessment on the Midwest Region:

“

In general, climate change will tend to amplify existing climate-related risks to people, ecosystems, and infrastructure in the Midwest. Direct effects of increased heat stress, flooding, drought, and late spring freezes on natural and managed ecosystems may be multiplied by changes in pests and disease prevalence, increased competition from non-native or opportunistic native species, ecosystem disturbances, land-use change, landscape fragmentation, atmospheric pollutants, and economic shocks such as crop failures or reduced yields due to extreme weather events. These added stresses, when taken collectively, are projected to alter the ecosystem and socioeconomic patterns and processes in ways that most people in the region would consider detrimental. Much of the region’s fisheries, recreation, tourism, and commerce depend on the Great Lakes and expansive northern forests, which already face pollution and invasive species pressure that will be exacerbated by climate change.

Most of the region’s population lives in cities, which are particularly vulnerable to climate change related flooding and life-threatening heat waves because of aging infrastructure and other factors. Climate change may also augment or intensify other stresses on vegetation encountered in urban environments, including increased atmospheric pollution, heat island effects, a highly variable water cycle, and frequent exposure to new pests and diseases. Some cities in the region are already engaged in the process of capacity building or are actively building resilience to the threats posed by climate change. The region’s highly energy-intensive economy emits a disproportionately large amount of the gases responsible for warming the climate.

Primary Issues for Midwest

1: Impacts to Agriculture

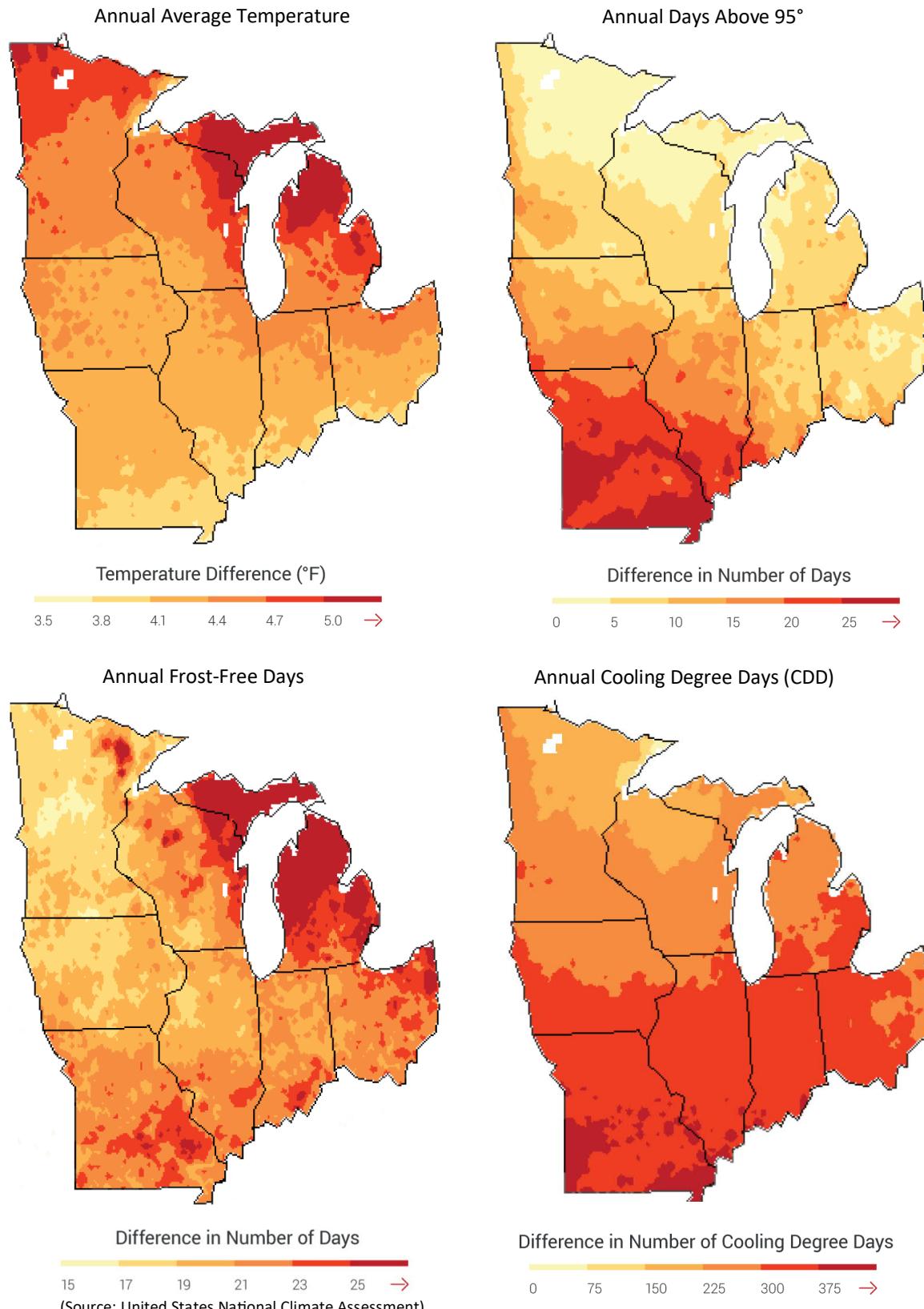
Increases will continue in growing seasons, likely boosting some crop yields. Increases in extreme weather, number of very-hot days, flooding, and days without precipitation will likely decrease other yields. Overall, Midwest productivity is expected to decrease through the century.

2: Forest Composition

Rising air and soil temperatures, and variability in soil moisture will stress tree species. Forest compositions will change as habitats are driven Northward by as much as 300 miles. Due to these ecosystem disruptions, the region’s forests may cease acting as a carbon sink, exacerbating greenhouse gas emission impacts.

3: Public Health Risks

Increased incident rate of days over 95 degrees, and humidity are anticipated to contribute to degradations in air and water quality. Each of these will increase public health risk, especially for at-risk populations.

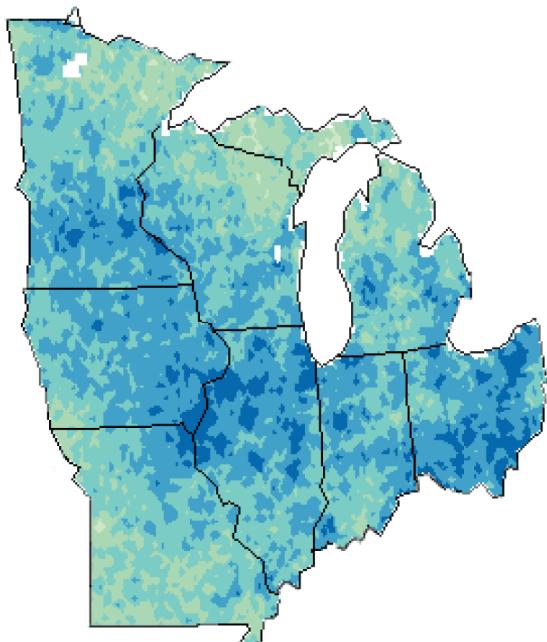

4: Increased Rainfall and Flooding

The frequency and size of extreme rainfall events and flooding has increased over the last century. In addition, the number of days without precipitation have increased. These trends are expected to continue, causing erosion, declining water quality, and impacts on human health, and infrastructure.

Emissions Trends by Mid-Century (2040 - 2070)

According to the US National Climate Assessment, based on current emissions trends, by mid-century (2040 - 2070) the Midwest region is projected to experience a climate that is...

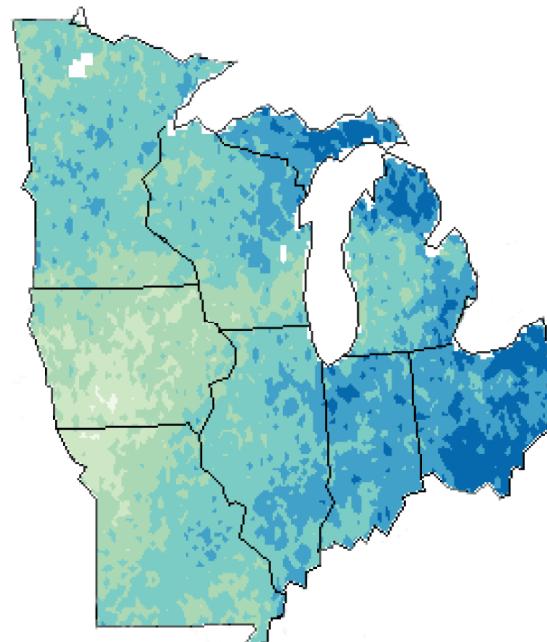
Hotter...



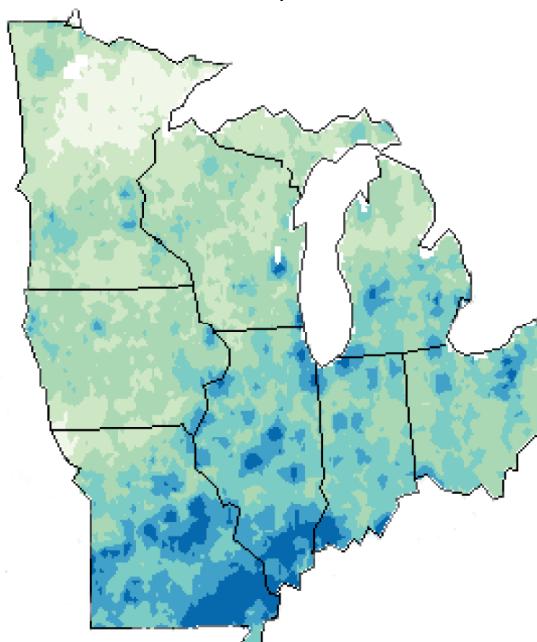
Emissions Trends by Mid-Century (2040 - 2070)

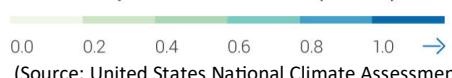
According to the US National Climate Assessment, based on current emissions trends, by mid-century (2040 - 2070) the Midwest region is projected to experience a climate that is...

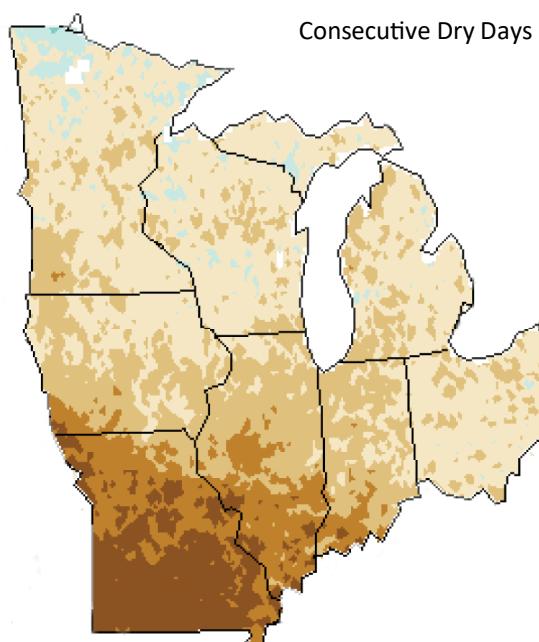
Hotter... With More Rain


Annual Precipitation

Precipitation Difference (Inches)


Annual Heavy Precipitation


Difference in Number of Days


Wettest 5-Day Period

Precipitation Difference (Inches)

Consecutive Dry Days

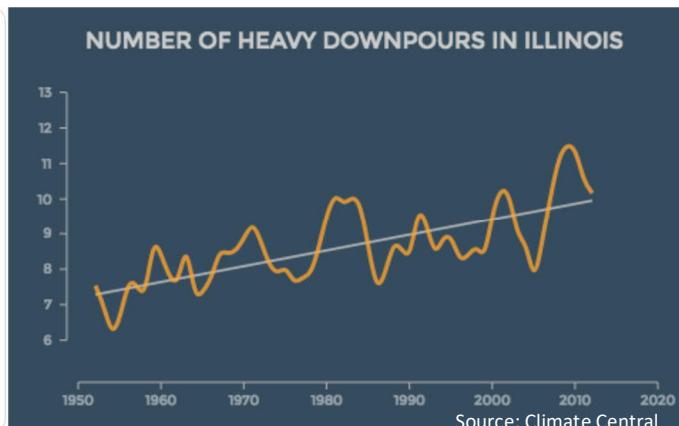
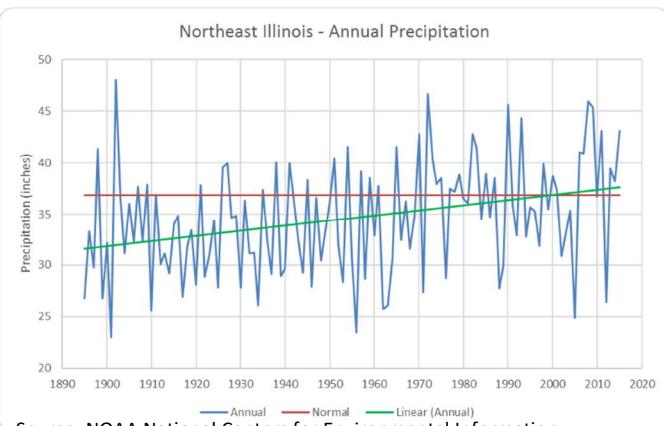
Difference in Number of Days

(Source: United States National Climate Assessment)

S e c t i o n

03

Climate Change In
Illinois

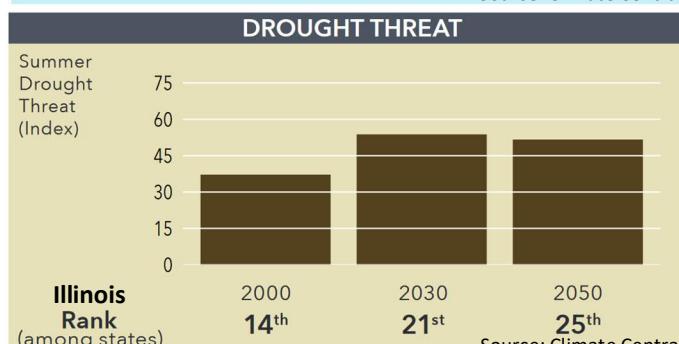
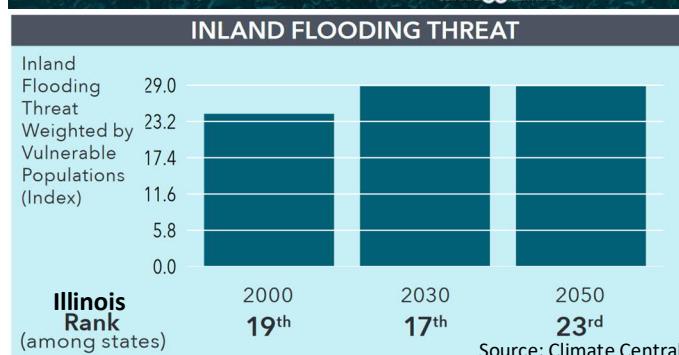
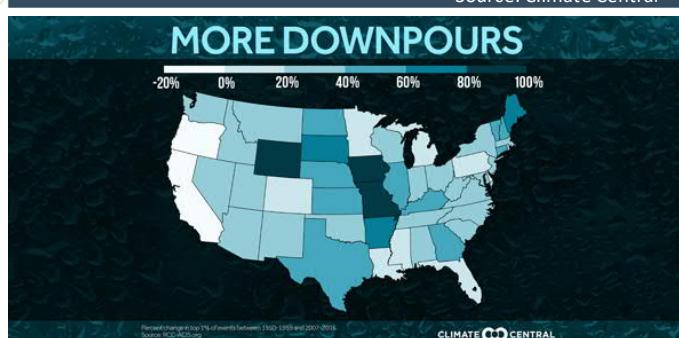



Climate Change In Illinois

Annual Rainfall

Heavier precipitation is a signature of climate change. For every 1°F of temperature increase, the atmosphere can effectively hold 4 percent more water vapor. As the world warms from the increase in greenhouse gases, the amount of evaporation also increases from oceans, lakes, rivers, and soils. The extra water vapor is available to produce additional rain and snow, creating an environment ripe for heavy precipitation events.

According to the Illinois Department of Natural Resources, precipitation in northeast Illinois has increased 19% since 1890. Much of that increase is the result of increases in precipitation in summer and fall. Illinois, home to a number of recent significant flooding events, has strong trends in heavy precipitation events. The State has seen an increase in the annual number of heavy rain events with a 34% increased since 1950.




Inland Flooding Threat in Illinois

By 2050, Illinois is projected to see an increase of inland flooding threat of 25 percent—with threat being calculated by severity of flooding weighted by the State's estimated flood vulnerable population. With this increase, by 2050, Illinois is projected to be ranked 23rd for inland flooding threat within the United States—a decrease from its current ranking as 19th.

Summer Drought in Illinois

By 2050, the severity of widespread summer drought is projected to see an increase of 40 percent—with threat being calculated by severity of drought weighted by the State's estimated drought vulnerable population. With this increase, by 2050, Illinois is projected to be ranked 25th for drought severity threat within the United States—a decrease from its current ranking as 15th.

(Source: Illinois State Climatologist, GLISA, University of Michigan Climate Central)

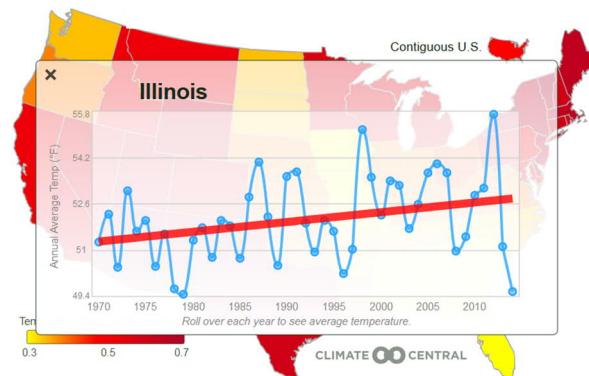
Climate Change In Illinois

Annual Temperatures

Annual temperatures have increased throughout Illinois over the last few decades. Typically, all seasons are warming across the US, with winter temperatures increasing the fastest. Illinois is no exception to this trend. Temperatures have been warming in Illinois since the 1980's with the average annual temperature increasing approximately 1.13° F. Temperature increases have been more sharply felt in the winter season with an increase of 2.27° F.

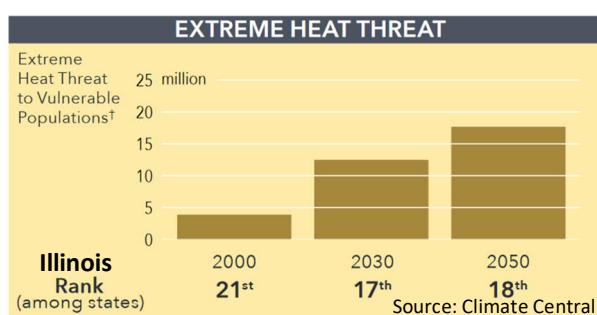
Observed Temperature Changes Northern Illinois (1981-2010)

	Current (degrees F)	Observed Change (degrees F)
Annual	49.41	1.13
Winter	25.51	2.27
Spring	48.81	1.32
Summer	71.41	0.56
Fall	52	0.59

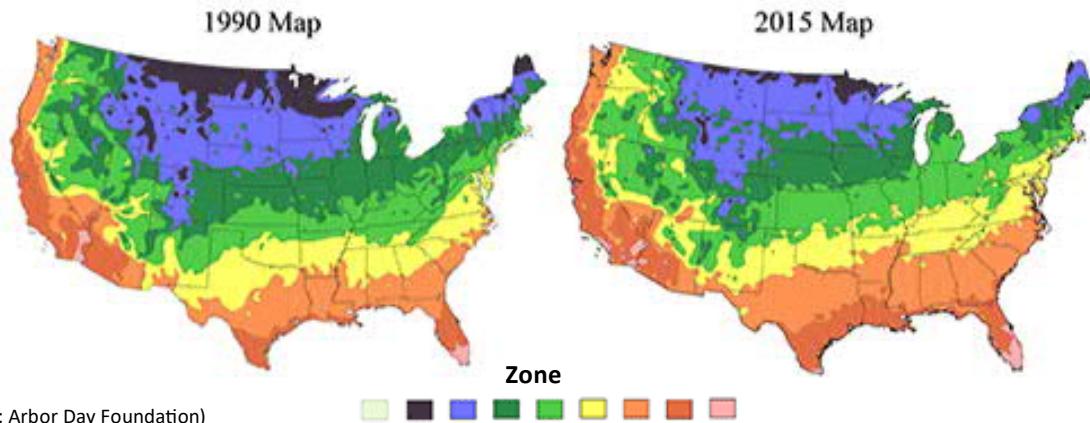

Source: University of Michigan Cities Impacts & Adaptation Tool

Dangerous Heat Days in Illinois

Illinois currently averages fewer than 20 dangerous heat days a year. By 2050, the state is projected to see 50 such days each year.


Source:
US Climate Resilience Toolkit

The frequency of cold waves has decreased since the early 1900s, and the frequency of heat waves has increased since the mid-1960s. The number of high temperature records set in the past two decades far exceeds the number of low temperature records. Even with the trend towards increasing temperatures for the region, climate variability is anticipated which may create extreme fluctuations such as weakening of the Jet Stream and increased incidence of polar vortex "wobble" delivering extreme cold to the region. Increased climate variability can have significant impacts on trees, perennial agriculture (fruit and nut trees), insect populations/balance, and agricultural impacts. These trends are expected to continue and increase.

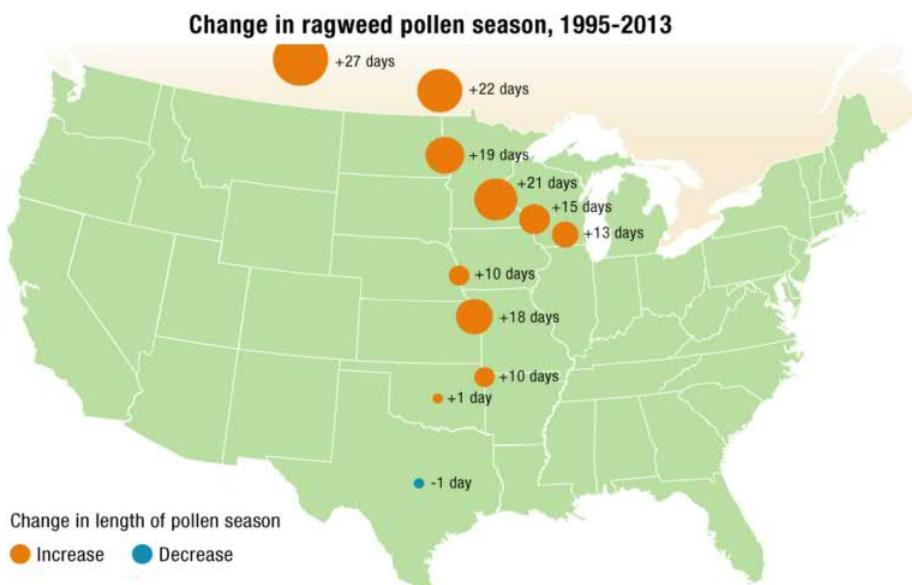

Extreme Heat Threat in Illinois

By 2050, Illinois is projected to see an increase in the Extreme Heat Threat of six fold. With this increase, by 2050, Illinois is projected to be ranked 18th for extreme heat threat within the United States. (Threat is calculated by number of heat wave days multiplied by the State's estimated extreme heat vulnerable population)

Changing USDA Zones

In addition to warmer weather, Illinois is experiencing less spring snow cover and earlier thaw dates resulting in more rapidly warming soil. The cumulative effects is a shift of USDA Hardiness zones to the North. In 1990 Northern Illinois had Zones 4 and 5, today it has Zones 5 and 6.

(Graphic: Arbor Day Foundation)

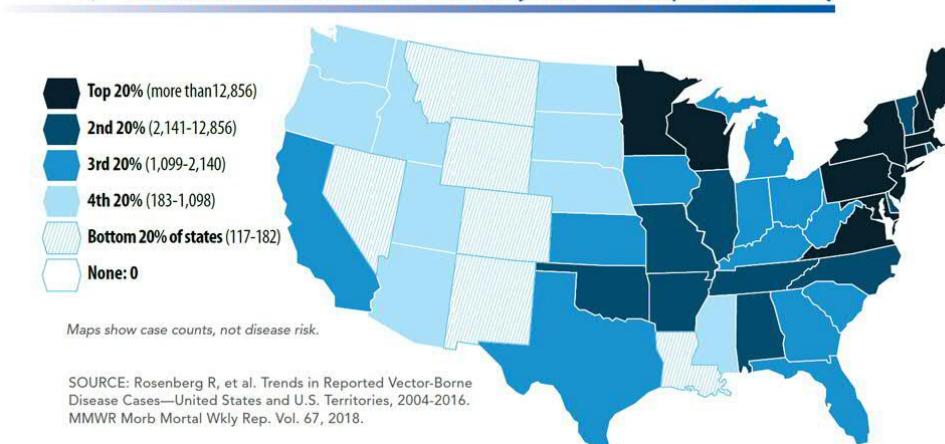
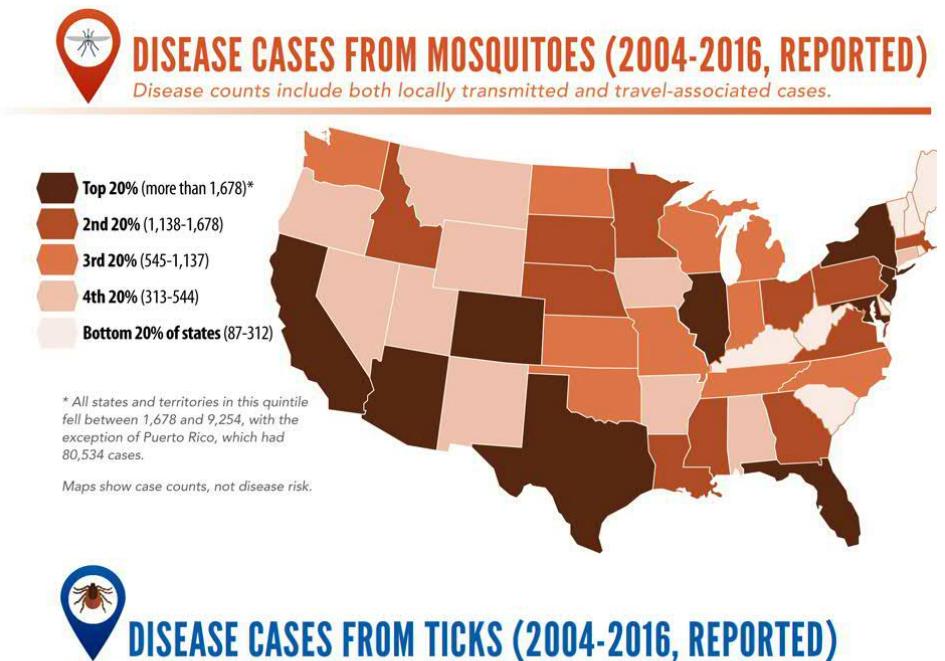

Climate Change In Illinois

Human Allergies

With the shift in hardiness zones and increasing growing season, increases in pollen quantity and duration have been experienced and projected to continue. Beyond inflammation and irritation associated with allergic reactions, some studies indicate pollen can affect the cardiovascular and pulmonary system.

Since 1995, the State of Illinois has experienced an increase in allergy season of 13-18 days.

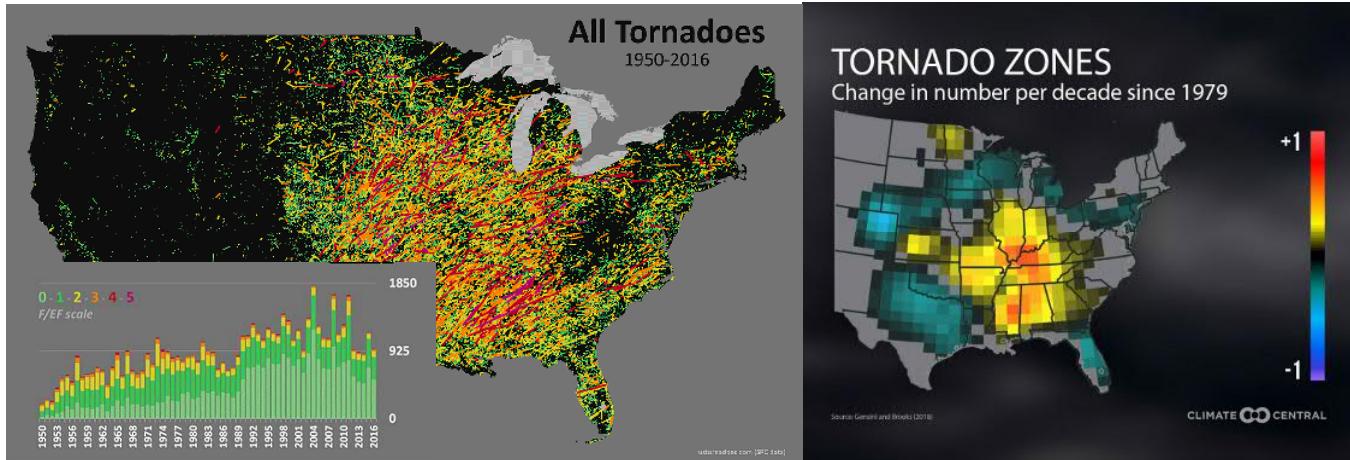
(Graphic: Jaime Chrismar
MPRnews.org)



Vector Borne Disease

Vector borne diseases are spread through insects and are highly sensitive to climatic factors.

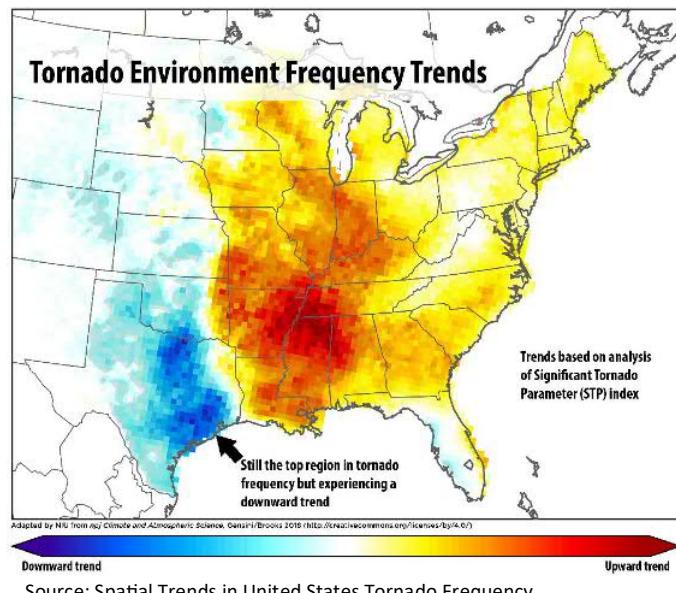
Warmer weather influences survival and reproduction rates of vectors, in turn influencing the intensity of vector activity throughout the year.

The high levels of disease cases from mosquitoes and ticks reported for the State of Illinois (to right) may be an illustration of the impacts of a warming Illinois climate. As the region's climate is projected to continue to warm with an increase in growing season, these high vector borne disease case trends may increase.

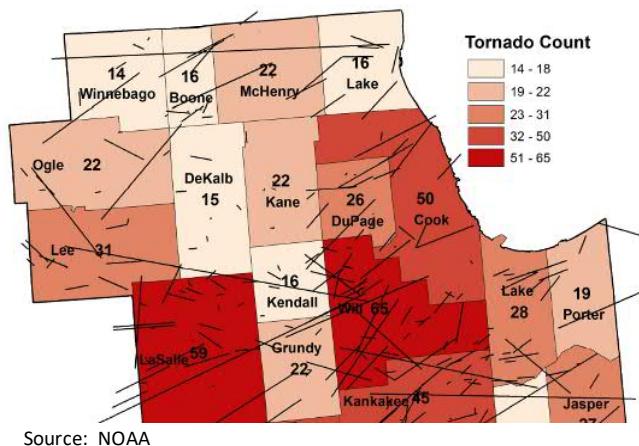

(Graphic: US CDC)

Climate Change In Illinois

Severe Weather - Observed Tornadoes in Illinois


By May of 2019, the US had experienced one of its worst tornado outbreaks of the past decade, with more than 500 reported over 30 days, with the total year to date over 200 higher than average. Research by Proceedings of The National Academies of Science of The United States of America, like the report "Robust increases in severe thunderstorm environments in response to greenhouse forcing" by Noah S. Diffenbaugh, et al, has suggested that climate change will create conditions more favorable to the formation of severe thunderstorms and tornadoes. The chart to the right shows the path and numbers of observed tornadoes across the US since 1950. Overall, the number of tornadoes appears to be increasing, however, the increase is currently observed only in weaker category storms.

The study "Report Increased variability of tornado occurrence in the United States" by Harold E. Brooks, et al found that there has been considerably more clustering of tornadoes in recent decades. In other words, there are more days in which multiple tornadoes occur, but fewer overall days with tornadoes. In another study "Spatial trends in United States tornado frequency" by Vittorio Gensini, the frequency trends of tornado environments were mapped, showing portions of Illinois with a significant upward trend.


Records by NOAA, mapped to the right and below, show the number of tornadoes in Northeast Illinois since 1950.

(Sources: NOAA, Proceedings of The National Academies of Science of The United States of America, Carbon Brief, Climate Central, UStornadoes.com,)

Source: Spatial Trends in United States Tornado Frequency

All Tornadoes by County from 1950-2017

Source: NOAA

S e c t i o n

04

Local Climate Change

Local Climate Change

The climate in the Village of Northbrook has already changed. From 1980 through 2018, the Village has experienced an increase in annual average temperature, an increase in the number of days above 95 degrees, an increase in the number of heavy rain events, and a decrease in the number of days below 32 degrees.

Some of the most significant changes in the climate relate to variability. Climate variability can be seen in the changes in annual precipitation for Northbrook. Overall annual precipitation has increased, however, this increase is not evenly distributed throughout the year. Fall and Winter precipitation have increased up to 15.5%, while Spring and Summer precipitation have remained nearly unchanged.

(Sources: US Climate Resilience Toolkit, Climate Science Special Report, University of Michigan Climate Center, US NOAA, Union of Concerned Scientists)

Looking Back

From 1980 through 2018, Northbrook has experienced:

Increase in annual average temperature:	1.13°
Increase in annual precipitation:	5.7%
Increase in heavy precipitation	34%
Increase in Days above 95:	2 days
Decrease in Days below 32:	-9 days
Increase in growing season:	10 days

Storm Weather Events

Number of Events Reported In Cook County:

From April 2000 to March 2010: **784 events**

From April 2010 to March 2020: **827 events** an increase of **10%**

Average Annual Storm Weather Damage 2000-2020:
(source: NOAA National Centers for Environmental Information)
\$29,000,000 + 17 deaths annually

The Village's climate is anticipated to continue to warm through this century and beyond. Precipitation is anticipated to likely increase in all seasons particularly in the Spring and Fall. The primary changes to climate characteristics for the Village include:

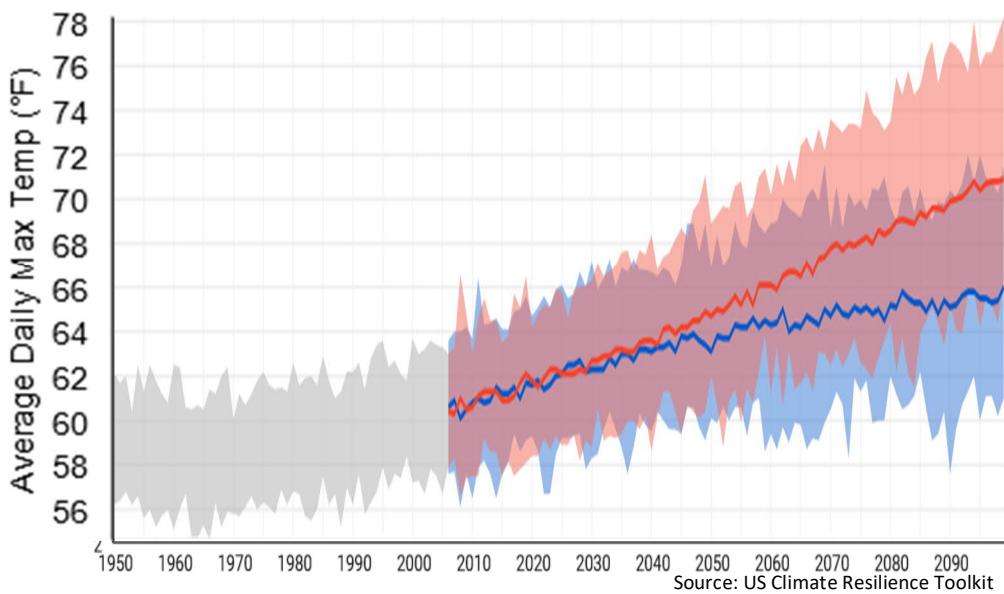
- Warmer annual average temperatures with a more significant warming in winter months.
- Increase in extreme heat days.
- Increase in heavy rain fall events, with increase in flood potential.
- Increase in time between precipitation with increase in drought potential.
- Greater variability in temperature and precipitation trends.

To serve the same size population, the projected increase in air conditioning demand would require an increase in community-wide electricity consumption of:

40%

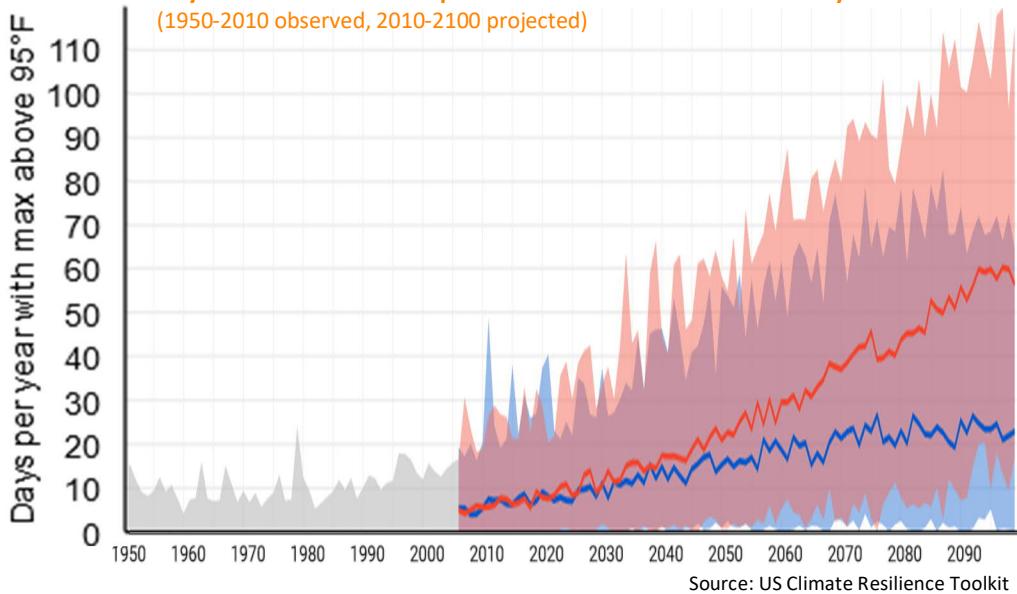
Looking Forward

By 2100, Northbrook can expect:


Increase in annual average temperature:	9-12°
Increase in annual precipitation:	-10% to +15% <small>Increased Seasonal Variability</small>
Increase in heavy precipitation	30%
Increase in Days above 95:	55 days
Decrease in Days below 32:	-58 days
Increase in growing, allergy, and insect season:	59 days
Increase in Air Conditioning Demand:	160%

Mean Daily Maximum Temperature

This chart shows observed average daily maximum temperatures for Cook County from 1950-2010, the range of projections for the historical period, and the range of projections for two possible futures through 2100. Maximum temperature serves as one measure of comfort and safety for people and for the health of plants and animals. When maximum temperature exceeds particular thresholds, people can become ill and transportation and energy infrastructure may be stressed.


Mean Daily Maximum Temperature for Cook County (1950-2010 observed, 2010-2100 projected)

Days with Maximum Temperature Above 95°F

This chart shows observed average number of days with temperatures above 95°F for Cook County from 1950-2010, the range of projections for the historical period, and the range of projections for two possible futures through 2100. The total number of days per year with maximum temperature above 95°F is an indicator of how often very hot conditions occur. Depending upon humidity, wind, and access to air-conditioning, humans may feel very uncomfortable or experience heat stress or illness on very hot days.

Days with Maximum Temperature Above 95°F for Cook County (1950-2010 observed, 2010-2100 projected)

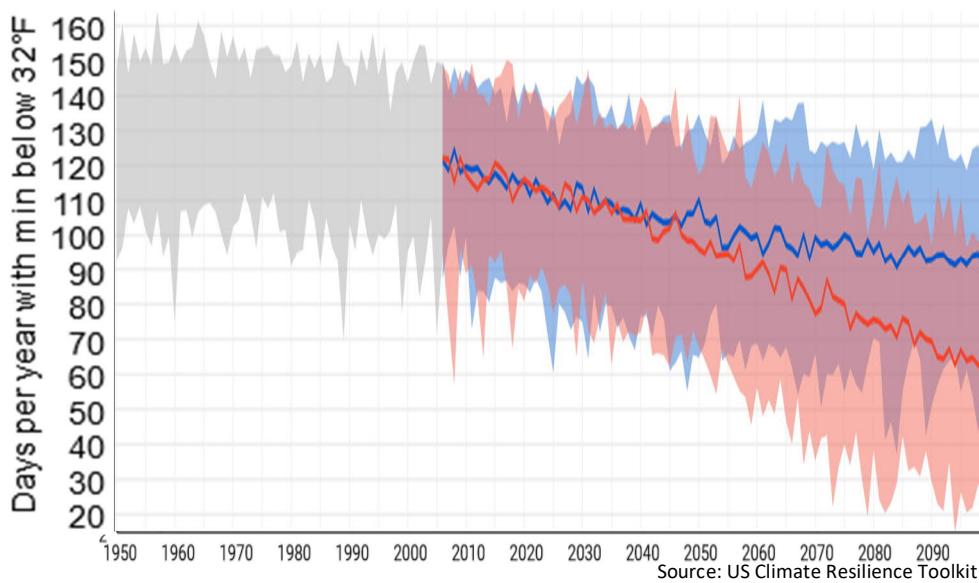
How To Read These Charts

Starting from the left and moving towards the right, the dark gray bars which are oriented vertically indicate observed historic values for each year. The horizontal line from which bars extend shows the county average from 1960-1989. Bars that extend above the line show years that were above average. Bars that extend below the line were below average. The lighter gray band, or area, shows the range of climate model data for the historical period – in other words, the lighter gray area shows the range of weather for the historic period.

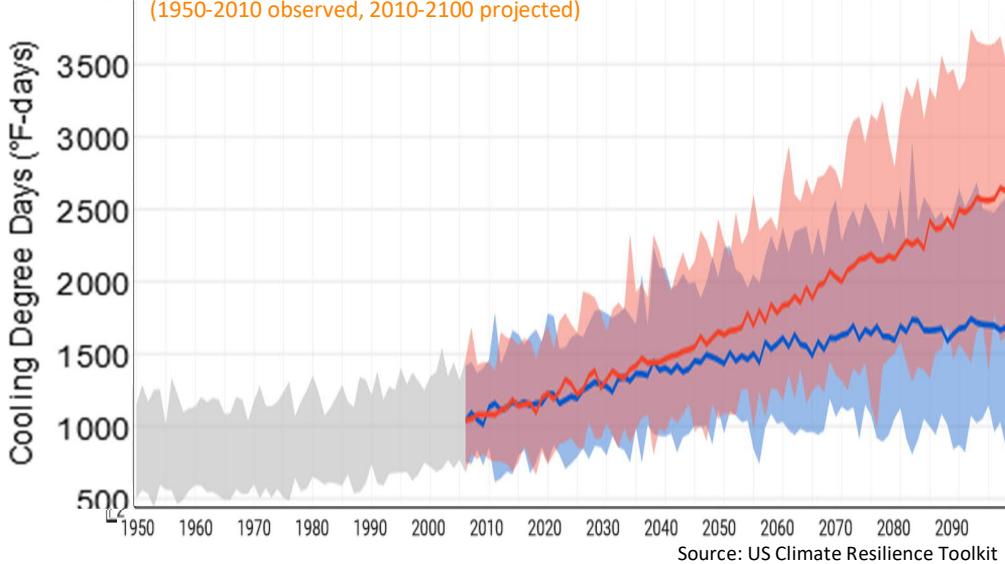
Starting from the left and moving right, the red toned band, or area, shows the range of future projections assuming global greenhouse gas emissions continue increasing at current rates. The darker red line shows the median of these projections. For planning purposes, people who have a low tolerance for risk often focus on this scenario.

The blue toned band, or area, shows the range of future projections for a scenario in which global greenhouse gas emissions stop increasing and stabilize. The darker blue line shows the median of these projections. Though the median is no more likely to predict an actual future than other projections in the range, both the red and blue lines help to highlight the projected trend in each scenario.

Days with Minimum Temperature Below 32°F


This chart shows observed average number of days with temperatures below 32°F for Cook County from 1950-2010, the range of projections for the historical period, and the range of projections for two possible futures through 2100. The total number of days per year with minimum temperature below 32°F is an indicator of how often cold days occur.

Winter recreation businesses depend on days with below-freezing temperatures to maintain snow pack. Additionally, some plants require a period of days below freezing before they can begin budding or blooming.


Cooling Degree Days

This chart shows observed average degree cooling days for Cook County from 1950-2010, the range of projections for the historical period, and the range of projections for two possible futures through 2100. The number of cooling degree days per year reflects the amount of energy people use to cool buildings during the warm season. Cooling degree days are calculated using 65°F degrees as the base building temperature. On a day when the average outdoor temperature is 85°F, reducing the indoor temperature by 20 degrees over 1 day requires 20 degrees of cooling multiplied by 1 day, or 20 cooling degree days.

Days with Minimum Temperature Below 32°F for Cook County (1950-2010 observed, 2010-2100 projected)

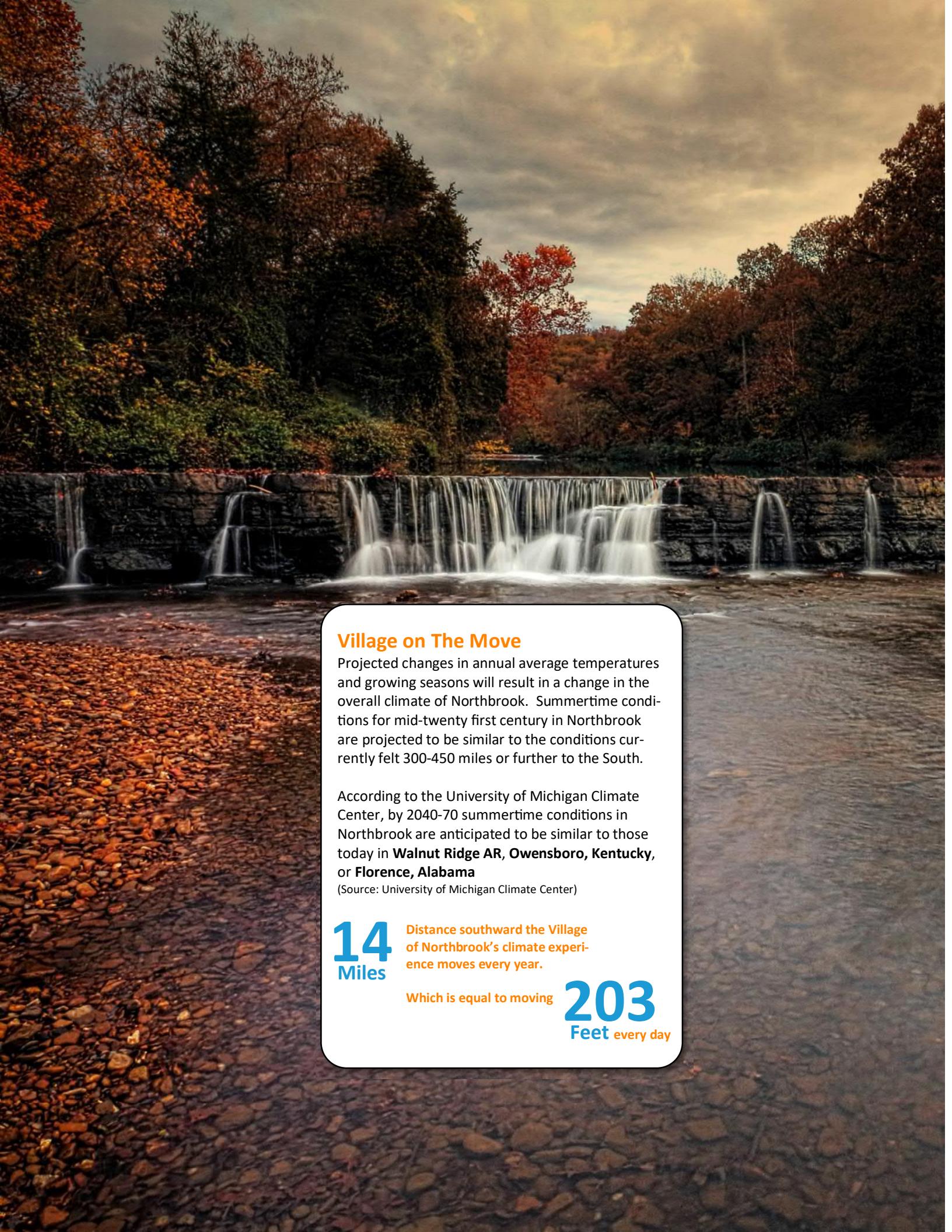
Cooling Degree Days for Cook County (1950-2010 observed, 2010-2100 projected)

How To Read These Charts

Starting from the left and moving towards the right, the dark gray bars which are oriented vertically indicate observed historic values for each year. The horizontal line from which bars extend shows the county average from 1960-1989. Bars that extend above the line show years that were above average. Bars that extend below the line were below average. The lighter gray band, or area, shows the range of climate model data for the historical period – in other words, the lighter gray area shows the range of weather for the historic period.

Starting from the left and moving right, the red toned band, or area, shows the range of future projections assuming global greenhouse gas emissions continue increasing at current rates. The darker red line shows the median of these projections. For planning purposes, people who have a low tolerance for risk often focus on this scenario.

The blue toned band, or area, shows the range of future projections for a scenario in which global greenhouse gas emissions stop increasing and stabilize. The darker blue line shows the median of these projections. Though the median is no more likely to predict an actual future than other projections in the range, both the red and blue lines help to highlight the projected trend in each scenario.



S e c t i o n

05

Village On The Move

Village on The Move

Projected changes in annual average temperatures and growing seasons will result in a change in the overall climate of Northbrook. Summertime conditions for mid-twenty first century in Northbrook are projected to be similar to the conditions currently felt 300-450 miles or further to the South.

According to the University of Michigan Climate Center, by 2040-70 summertime conditions in Northbrook are anticipated to be similar to those today in **Walnut Ridge AR, Owensboro, Kentucky, or Florence, Alabama**

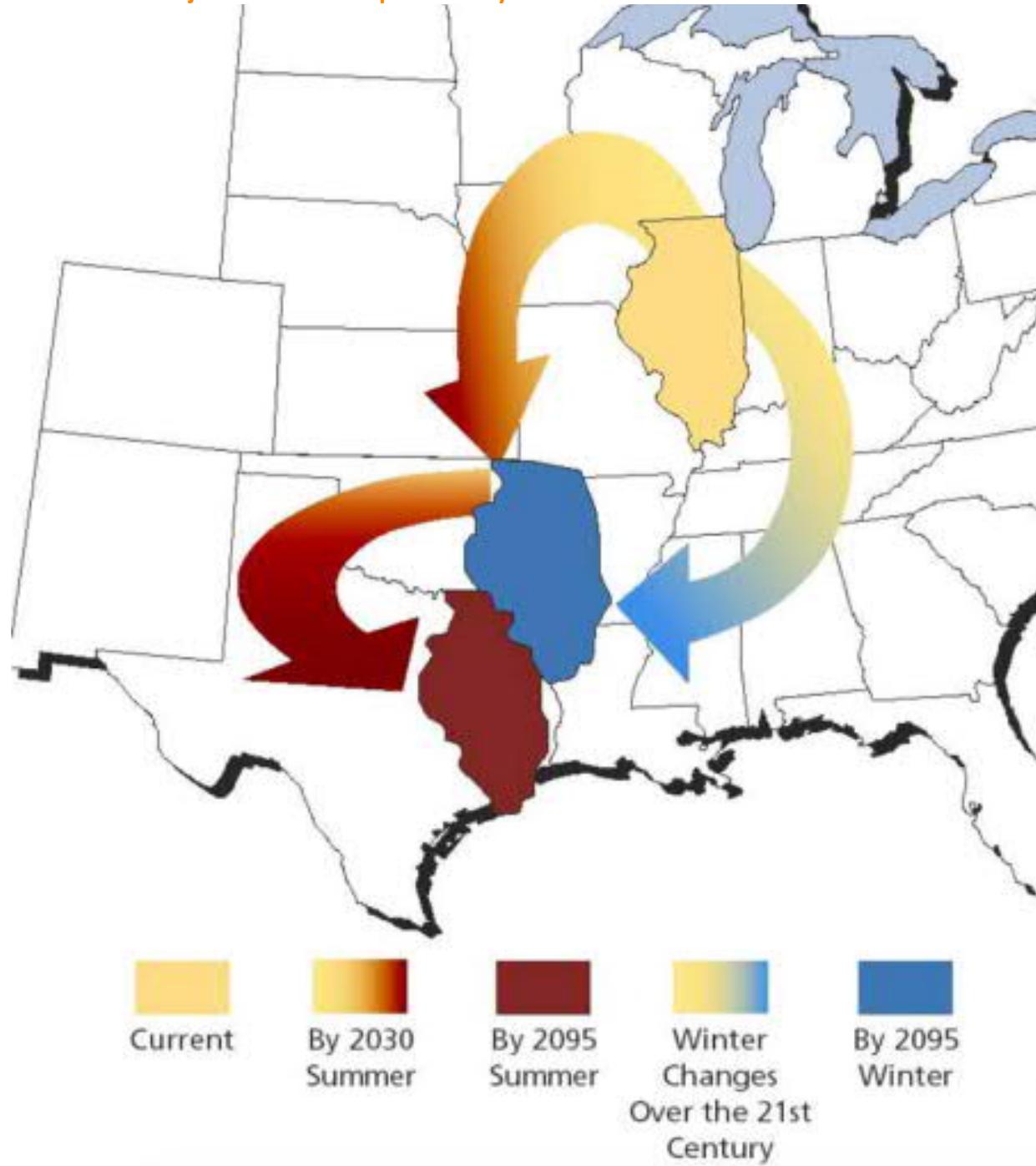
(Source: University of Michigan Climate Center)

14
Miles

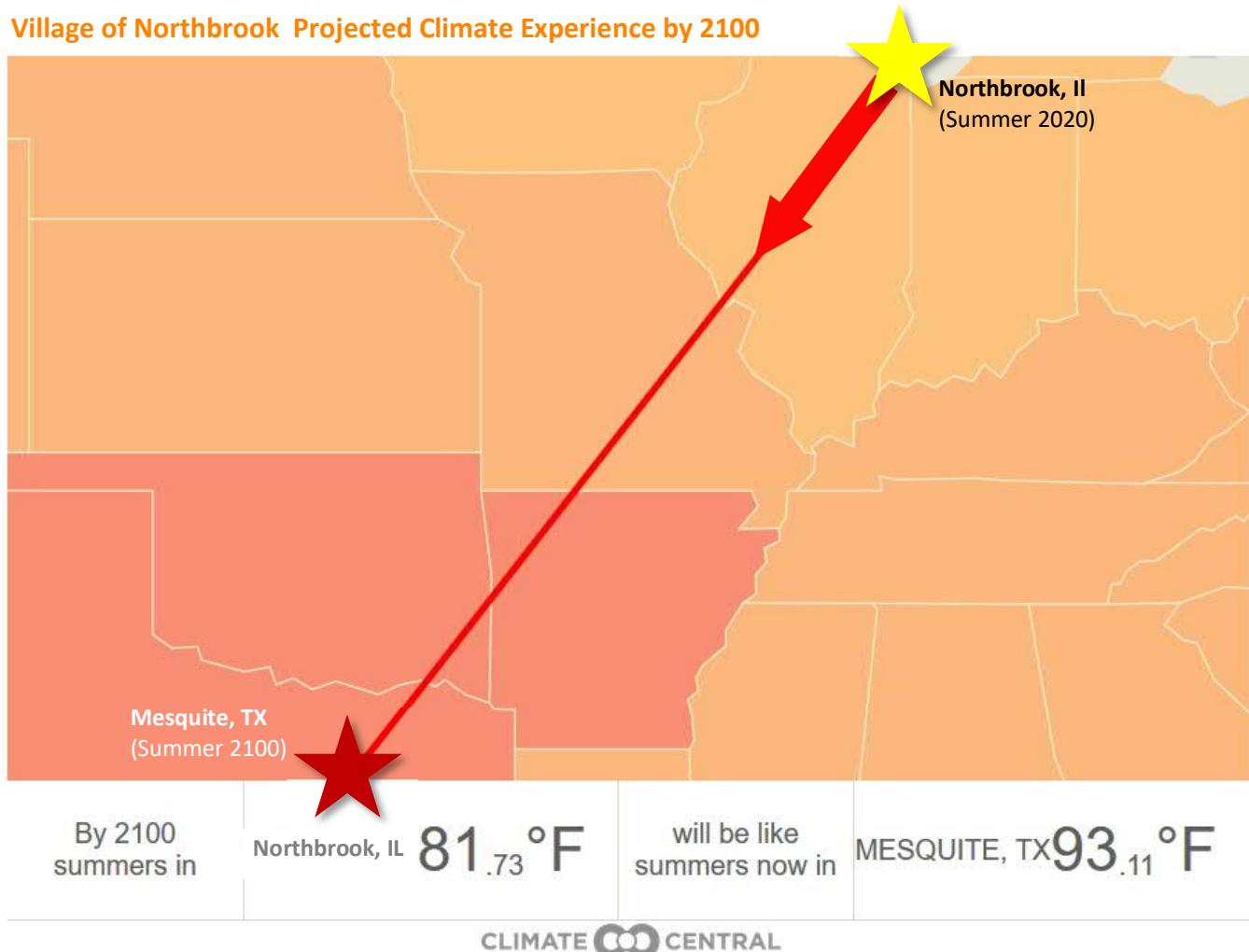
Distance southward the Village of Northbrook's climate experience moves every year.

Which is equal to moving

203
Feet every day


Village On The Move

Climate Peers - State of Illinois 2095


State Climate Peers experience current conditions which match the projected conditions for the State of Illinois by 2095. As temperatures continue to rise for Illinois into the future, the State's climate will resemble that of States to the South more and more. Climate models predict that by 2095 summers in Illinois will be more like the current summers of Texas and Louisiana, while winters will be more like current winters in Oklahoma and Arkansas.

(Graphic Source: University of Massachusetts Amherst, Data Sources: US Climate Assessment, Climate Central).

State of Illinois Projected Climate Experience by 2095

Village On The Move

Northbrook Climate Peers—2100

City Climate Peers experience current conditions which match the projected conditions for Northbrook by the year 2100. Summertime conditions in Northbrook, Illinois in this period can be anticipated to be similar to those currently experienced by Misquite Texas, over 900 miles to the South.

(Source US Climate Assessment, University of Massachusetts Amherst, Climate Central)

S e c t i o n

06

**Climate Risks to
The Population**

Climate Risks to The Population

The projected changes to the community's climate in the coming decades represent potential risks to residents. These risks are particularly acute in populations especially vulnerable to them such as children, seniors, and those with disabilities – see Vulnerable Populations section for more information. Below are some of the more significant risks to the community's population:

Extreme Weather / Temperature:

Certain groups of people are more at risk of stress, health impacts, or death related to Extreme Weather events including heat stress, tornadoes, wind storms, lightning, wildfires, winter storms, hail storms, and cold waves. The risks related to extreme weather events include traumatic personal injury (tornadoes, storms), carbon monoxide poisoning (related to power outages), asthma exacerbations (wildfires, heat stress), hypothermia/ frostbite (cold waves, winter storms), and mental health impacts.

Vulnerability to heat stress can be increased by certain variables including the presence of health conditions like diabetes and heart conditions; demographic and socioeconomic factors (e.g. aged 65 years and older living alone); and land cover (e.g. Low percentage tree canopy cover). Studies of heat waves and mortality in the United States demonstrate that increased temperatures or periods of extended high temperatures have increased heat-related deaths. During heat waves, calls to emergency medical services and hospital admissions have also increased.

According to the US National Climate and Health Assessment:

"While it is intuitive that extremes can have health impacts such as death or injury during an event (for example, drowning during floods), health impacts can also occur before or after an extreme event as individuals may be involved in activities that put their health at risk, such as disaster preparation and post-event cleanup. Health risks may also arise long after the event, or in places outside the area where the event took place, as a result of damage to property, destruction of assets, loss of infrastructure and public services, social and economic impacts, environmental degradation, and other factors. Extreme events also pose unique health risks if multiple events occur simultaneously or in succession in a given location, but these issues of cumulative or compounding impacts are still emerging in the literature."

In addition, extreme weather can cause economic stress. Property damage, business closure, crop loss, job loss, and employment "down time" can all be caused by extreme storms, weather, and temperatures. These economic impacts can affect individuals, families, businesses, and communities at large. According to the North American Electric Reliability Corporation, the leading cause of electric transmission outages (in terms of electric outage count) in Illinois is "Severe Weather - Thunderstorm".

More than **310,000** people living Illinois are especially vulnerable to extreme heat .

**Increased Risk of Extreme Cold
Caused by Jetstream "Wobble"**

Increased Risk of Extreme Heat

Graphic Source: Climate Central

Graphic Source: NASA

Climate Risks to The Population

Extreme Weather / Temperature (continued)

Increased Risk of Extreme Cold

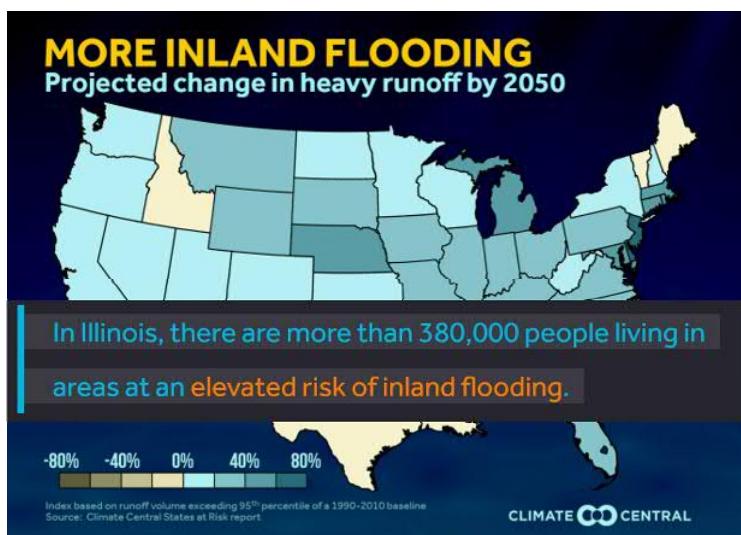
Though global temperatures are rising, there is evidence that the region is at risk of increased likelihood of extreme cold temperatures during winter “cold snaps” due to variations in the jet stream caused by warming ocean temperatures and a warming Arctic region. The jet stream—a powerful river of wind high in the atmosphere—shapes the Northern Hemisphere’s weather, and it plays a key role in weather extremes. This powerful river of wind transports moisture and moves masses of cold and warm air and storm systems along its path.

The jet stream is driven partly by the temperature contrast between masses of cold air over the North Pole and warmer air near the equator. Climate change has led to faster warming in the Arctic than in the temperate zones, reducing the temperature differences between the two regions and weakening the jet stream. As the jet stream becomes weaker, it has periods of “wobble” in which it coils much more significantly dipping far to the South. As the jet stream coils southward it brings bitter cold arctic air southward along with it. Studies indicate that as arctic temperatures continue to rise, increases in jet stream “wobble” and extreme winter cold snaps may increase in occurrence.

Flood and Drought Vulnerability

According to the latest National Climate Assessment, the frequency of heavy precipitation events has already increased for the nation as a whole as well as for Illinois specifically. These heavy rain events are projected to increase throughout Illinois. Increases in both extreme precipitation and total precipitation have contributed to increases in severe flooding events in certain regions. Floods are the second deadliest of all weather-related hazards in the United States.

In addition to the immediate health hazards associated with extreme precipitation events when flooding occurs, other hazards can often appear once a storm has passed. Elevated waterborne disease outbreaks have been reported in the weeks following heavy rainfall, although other variables may affect these associations. Water intrusion into buildings can result in mold contamination that manifests later, leading to indoor air quality problems. Populations living in damp indoor environments experience increased prevalence of asthma and other upper respiratory tract symptoms, such as coughing and wheezing, as well as lower respiratory tract infections such as pneumonia, respiratory syncytial virus, and pneumonia.


Flooding causes economic stress. Property damage, business closure, crop loss, job loss, and employment “down time” can all be caused by extreme storms, weather, and temperatures. These economic impacts can affect individuals, families, businesses, and communities at large.

By 2050, Illinois is projected to see:

An increase of flood risk by more than **25%**

As well as a **40%** increase in its index of the severity of widespread drought.

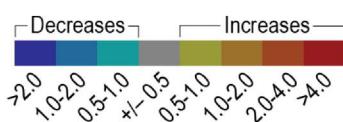
(Source: US Climate Resilience Toolkit, Climate Central; Graphic Source: Climate Central)

Climate Risks to The Population

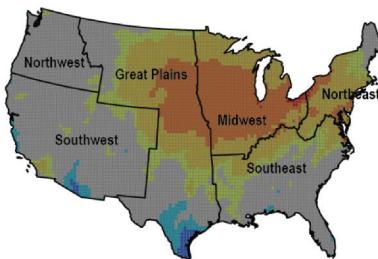
Air Quality Impacts

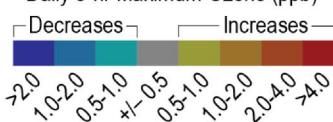
According to the published literature, air pollution is associated with premature death, increased rates of hospitalization for respiratory and cardiovascular conditions, adverse birth outcomes, and lung cancer. Air quality is indexed (AQI) by the U.S. Environmental Protection Agency (EPA) and Illinois Pollution Control Board to provide a simple, uniform way to report daily air quality conditions. Illinois AQI numbers are determined by hourly measurements of five pollutants: fine particles (PM_{2.5}), ground-level ozone (O₃), sulfur dioxide (SO₂), nitrogen dioxide (NO₂), and carbon monoxide (CO). The levels of all of these pollutants can be effected by climate impacts as well as the greenhouse gas emissions which are driving Illinois' changing climate impacts.

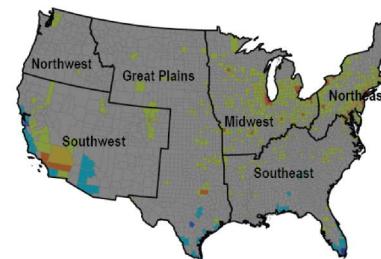
These pollutants have a range of potential health impacts. Ozone exposure may lead to a number of adverse health effects such as shortness of breath, chest pain when inhaling deeply, wheezing and coughing, temporary decreases in lung function, and lower respiratory tract infections. Long-term exposure to fine particulate matter (also known as PM_{2.5}) is correlated with a number of adverse health effects. In fact, each 10 µg/m³ elevation in PM_{2.5} is associated with an 8% increase in lung cancer mortality, a 6% increase in cardiopulmonary mortality, and a 4% increase in death from general causes. The annual average of PM_{2.5} provides an indication of the long-term trends in overall burden, relevant to the long-term health effects. Increased surface temperatures are known to increase ground level ozone levels. The projected Illinois climate change impacts of extreme heat, changes in precipitation, drought and wild fires can all cause increases in fine particulate matter, which in turn, can contribute to respiratory illness particularly in populations vulnerable to them.

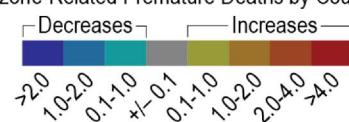

The US EPA designates counties with unhealthy levels of air pollution as "Non attainment" areas and areas which are on the edge of unhealthy levels "maintenance" areas. The State of Illinois has had multiple jurisdictions designated as "non attainment" areas. However some of these areas have re-met federal air quality requirements and are now maintenance areas. Air quality issues currently being addressed in State of Illinois implementation plans include Carbon Monoxide, Sulfur Dioxide, and Particulate Matter. For current and forecasted air quality throughout the state visit: <https://cfpub.epa.gov/airnow>. You can also download Plume Lab's free mobile phone air quality monitoring app: <https://plumelabs.com/en/air/>

Climate change is expected to affect air quality through several pathways, including production and potency of allergens and increase regional concentrations of ozone, fine particles, and dust. Some of these pollutants can directly cause respiratory disease or exacerbate existing conditions in susceptible populations, such as children or the elderly. Other air quality issues with health considerations include allergens, pollen, and smoke from wildfires (traces sufficient to cause respiratory impacts are capable of traveling great distances). Each of these are anticipated to be increased with climate change.


Change in Average Daily Maximum Temperature


Change in Temperature (°F)


Change in Daily 8-hr Maximum Ozone


Climate-Attributable Change in Summer Season Daily 8-hr Maximum Ozone (ppb)

Excess Ozone-Related Deaths

Climate-Attributable Change in Ozone-Related Premature Deaths by County

Source: US Climate Resilience Toolkit

Projected Change in Temperature, Ozone, and Ozone-Related Premature Deaths in 2030

Projected changes in average daily maximum temperature (degrees Fahrenheit), summer average maximum daily 8-hour ozone (parts per billion), and excess ozone-related deaths (incidences per year by county) in the year 2030 relative to the year 2000. (Source: US Climate Resilience Toolkit)

Climate Risks to The Population

Vector-Borne Diseases

Vector-Borne diseases are diseases spread by agents such as ticks and mosquitoes. The projected climate change impacts in this region are anticipated to increase the spread of vector borne diseases such as West Nile virus, and Lyme disease by altering conditions that affect the development and dynamics of the disease vectors and the pathogens they carry. Rising global temperatures can increase the geographic range of disease-carrying insects, while increased rainfall, flooding and humidity creates more viable areas for vector breeding and allows breeding to occur more quickly. In addition, Illinois' lengthening growing season and warming winters will increase the population of vector carrying insects as well as open the region up to new species.

Food Insecurity and Food-borne Diseases

According to former U.S. agriculture secretary Tom Vilsack, climate change is likely to destabilize cropping systems, interrupt transportation networks and trigger food shortages and spikes in food cost. According to the US National Climate Assessment for the Midwestern states: "In the next few decades, longer growing seasons and rising carbon dioxide levels will increase yields of some crops, though those benefits will be progressively offset by extreme weather events. Though adaptation options can reduce some of the detrimental effects, in the long term, the combined stresses associated with climate change are expected to decrease agricultural productivity."

Nutritious food is a basic necessity of life, and failure to obtain sufficient calories, macronutrients (fats, proteins, carbohydrates), and micronutrients (vitamins, minerals) can result in illness and death. While malnutrition and hunger are typically problems in the developing world, Illinois still has significant populations affected by insufficient food resources and under-nutrition. Food can be a source of food-borne illnesses, resulting from eating spoiled food or food contaminated with microbes, chemical residues or toxic substances. The potential effects of climate change on food-borne illness, nutrition, and security are mostly indirect but represent risks, especially for vulnerable populations. Some of the climate impacts which may increase food insecurity and food-borne diseases in Illinois include:

- Extreme weather events and changes in temperature and precipitation can damage or destroy crops and interrupt the transportation and delivery of food
- Changes in agricultural ranges, practices and changing environmental conditions can reduce the availability and nutritional content of food supplies. For example, an increase in the use of pesticides leads to a decrease in nutritional content of food.
- Extreme weather events, such as flooding, drought, and wildfires can contaminate crops and fisheries with metals, chemicals, and toxicants released into the environment.
- Degraded soil health and soil erosion, exacerbated by increasing drought/flood cycles and increasing storm intensities.

Climate Risks to The Population

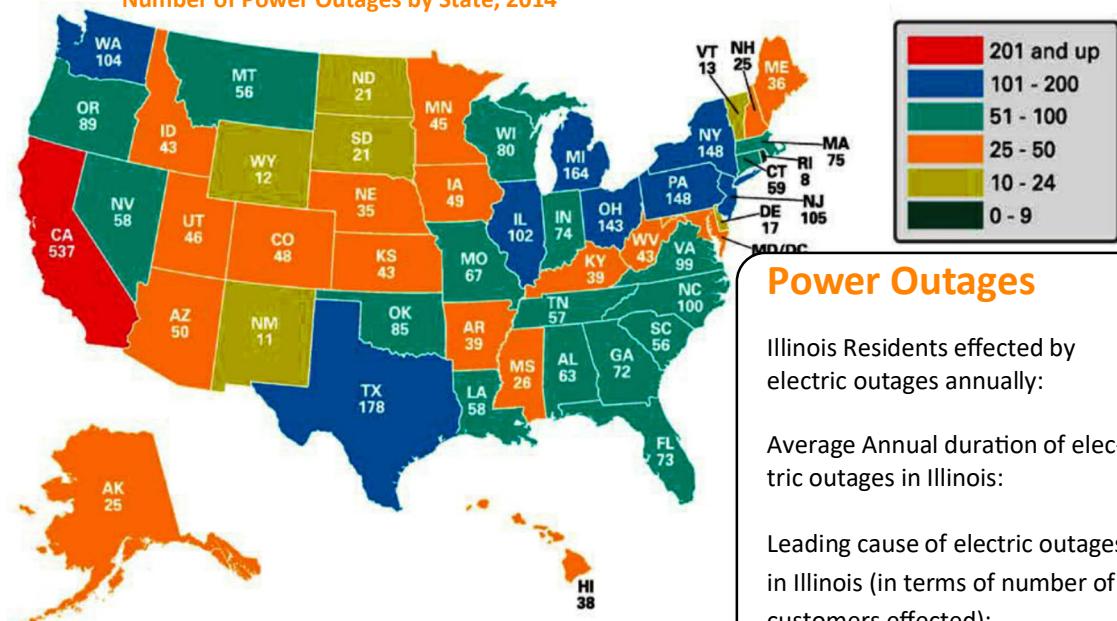
Water Quality/Quantity

Water risks consist of both water quality as well as water quantity issues. Water quantity issues are clearly linked to precipitation levels and timing, water variability, as well as changes in water demand. Water demand itself can be increased not only by population changes but also as a result of climate changes such as increased temperatures and time frames between rain events which increase demands on water consumption. In addition, water withdraw from ground water sources deplete aquifer capacities. Indirectly, the lack of water can cause pressure on agricultural productivity, increase crop failure, and cause reductions in food supply and increases in food prices and food insecurity. As a highly precious resource, all communities should look to increase water conservation regardless of the projected water stress levels of their immediate region, while communities in regions with a projected increase in water stress should view water conservation as a major long-term priority.

Water quality issues can be affected by climate impacts in a number of ways:

- Increased precipitation and rapid snow melt can result in flooding, which in turn increases the likelihood of water contamination from sources such as sewage as well as contaminants such as chloride, gasoline, oil, chemicals, fertilizers, and pesticides.
- Increased air and water temperatures can increase toxic algae blooms, decrease water oxygen levels, and cause changes in fish populations as well as increases in mercury concentrations in fish.
- Increased heavy rain events can result in increases in sediment, diminishing water quality.

Waterborne Illness

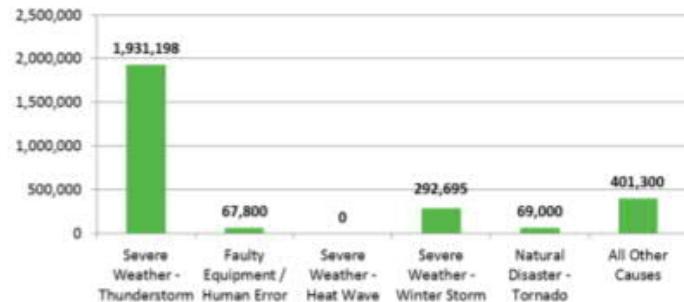

Waterborne diseases are caused by a variety of microorganisms, biotoxins, and toxic contaminants, which lead to devastating illnesses such as cholera, schistosomiasis and other gastrointestinal problems. Outbreaks of waterborne diseases often occur after a severe precipitation event (rainfall, snowfall). Because climate change increases the severity and frequency of some major precipitation events, communities could be faced with elevated disease burden from waterborne diseases. Increased frequency of intense extreme weather events can cause flooding of water and sewage treatment facilities, increasing the risk of waterborne diseases.

Infrastructure Failure

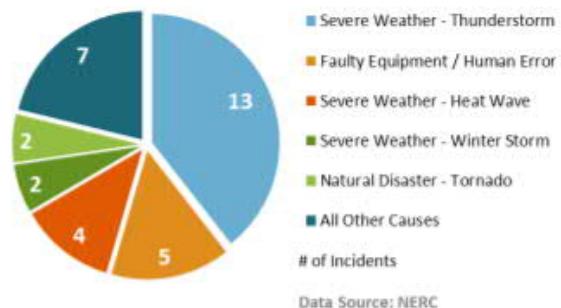
Extreme weather events, flooding and flash flooding, as well as increasing daily stresses caused by increasing climate variability all represent potential causes of failure of our aging infrastructure. Power outages, road damage, bridge collapse, water infrastructure failure - each of these represent significant physical climate risks to the community, especially individuals who are climate vulnerable.

Number of Power Outages by State, 2014

Source: Eaton Blackout Tracker

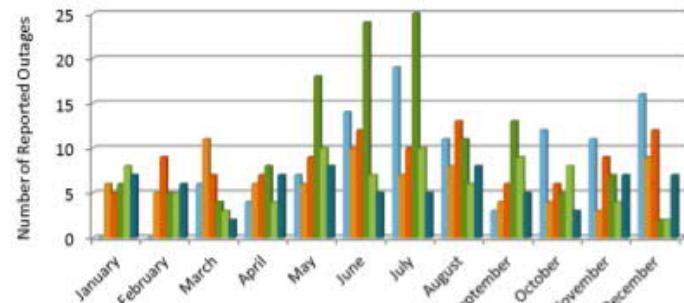


Climate Risks to The Population

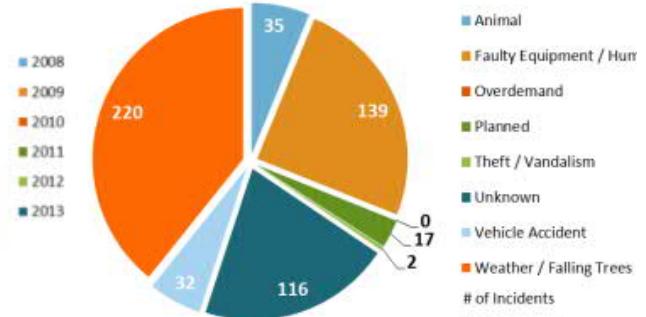


Infrastructure Failure (continued)

Electric Customers Disrupted by NERC-Reported Electric Transmission Outages by Cause (1992–2009)



Number of NERC-Reported Electric Transmission Outages by Cause (1992–2009)


Data Source: NERC

Electric-Utility Reported Power Outages by Month (2008–2013)



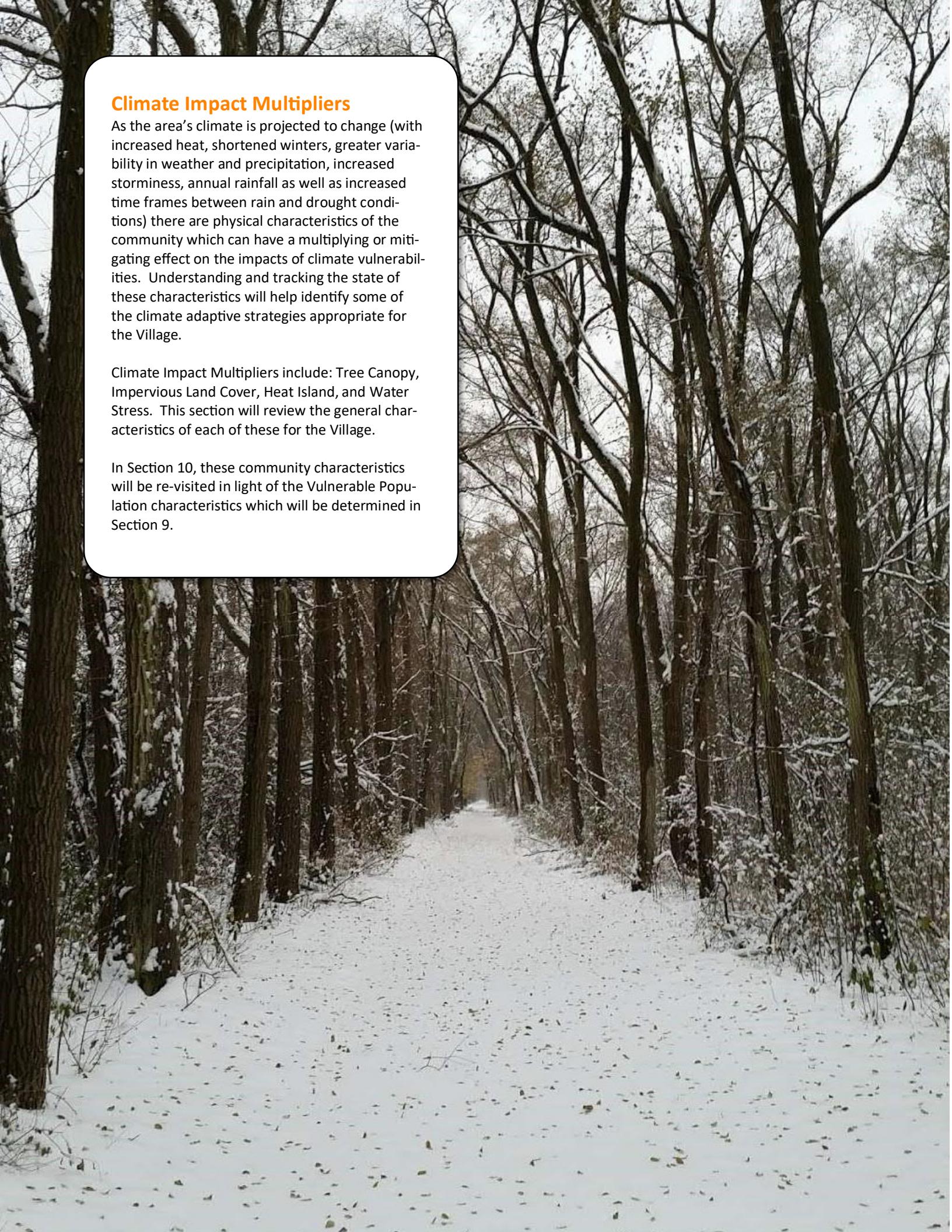
(Source: US DOE, NERC, Eaton; Graphic Source: US DOE)

Causes of Electric-Utility Reported Outages (2008–2013)

Global Electric Loss Events, 2014

Section 07

**Climate Impact
Multipliers**



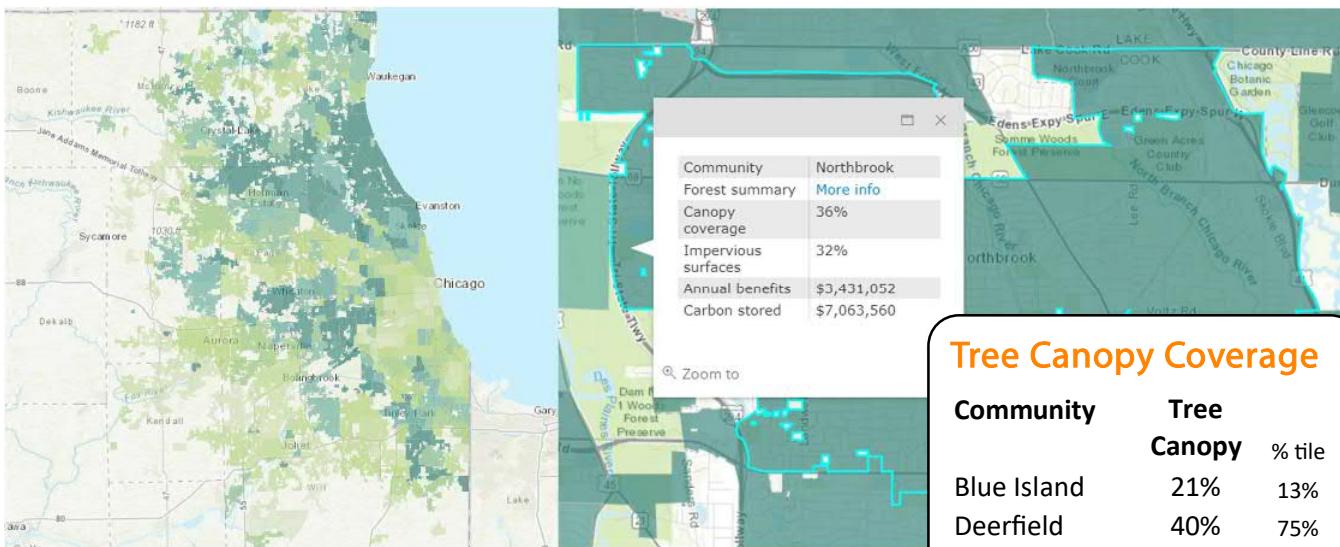
Climate Impact Multipliers

As the area's climate is projected to change (with increased heat, shortened winters, greater variability in weather and precipitation, increased storminess, annual rainfall as well as increased time frames between rain and drought conditions) there are physical characteristics of the community which can have a multiplying or mitigating effect on the impacts of climate vulnerabilities. Understanding and tracking the state of these characteristics will help identify some of the climate adaptive strategies appropriate for the Village.

Climate Impact Multipliers include: Tree Canopy, Impervious Land Cover, Heat Island, and Water Stress. This section will review the general characteristics of each of these for the Village.

In Section 10, these community characteristics will be re-visited in light of the Vulnerable Population characteristics which will be determined in Section 9.

Climate Impact Multipliers


Tree Canopy

A healthy and extensive tree canopy within developed areas can mitigate the impacts of heat stress, water impacts, increased levels of precipitation and drought, and air quality impacts. “Urban forests” deliver a range of environmental, health, and social benefits. Shaded surfaces can be anywhere from 25°F to 45°F cooler than the peak temperatures of unshaded surfaces. Trees cool communities, reduce heating and cooling costs, capture and remove air pollutants including CO₂ from the air; strengthen quality of place and local economies, improve the quality of storm water entering rivers and streams, reduce storm water infrastructure costs, improve social connections, positively contribute to property value, improve pedestrian/recreation experiences, reduce mental fatigue, improve overall quality of life for residents, and provide habitat to support biodiversity.

A healthy tree canopy mitigates heat stress in developed areas by providing direct shading on buildings and through transpiration cooling. Neighborhoods well shaded by street and yard trees can be up to 6-10 degrees cooler than neighborhoods without, reducing overall energy needs. Just three trees properly placed around a house can save up to 30% of energy use.

Village of Northbrook Tree Canopy

An Urban Tree Canopy (UTC) analysis of the Chicago metro area was conducted. The UTC analysis was conducted by the University of Vermont, and supported by the USDA Forest Service, The Morton Arboretum, and American Forests used high-resolution LiDAR imagery to quantify and map the regional forest and canopy in detail. The results from this UTC analysis from the Chicago Regional Trees Initiative for the Village of Northbrook are shown below.

Tree Canopy Coverage

Community	Tree Canopy	% tile
Blue Island	21%	13%
Deerfield	40%	75%
Evanston	38%	50%
Glenview	34%	25%
Highland Park	49%	100%
Oak Park	38%	50%
Park Forest	42%	88%
Northbrook	36%	38%

Source: Chicago Region Trees Initiative

Planting Climate Adaptive Trees

Tree canopies in Illinois also have some vulnerabilities associated with the current and projected impacts of climate change. Trees have a degree of vulnerability to changes in temperature ranges, precipitation patterns, soil temperature and moisture levels, and changes to winter processes and growing season length. Climate change also introduces the potential for introducing new or expanding the life cycle or range of existing tree pests - such as Emerald Ash Borer (EAB) which can cause vast damage to existing tree stock.

According to the US Forest service, urban forests are very susceptible to a number of climate change factors including species invasion, and insect and pathogen attack. These stressors will make it more difficult to preserve or increase canopy cover in Illinois communities. Conducting tree canopy studies and creating climate adaptive tree canopy policies will help Illinois communities in adapting to these stressors.

Species projected to have negative stressors in the Northbrook region include Balsam Fir, Eastern White Pine, Northern White Cedar, and Alder. Additionally, increased growing seasons will result in taller trees which may be more susceptible to damage in extreme weather events. Boulevard, streetscape, and parking lot trees are particularly vulnerable due to decreased snow cover, increased freeze/thaw cycles, salt exposure, and increased chemical exposure.

Climate Impact Multipliers

Impervious Land Cover

Impervious surfaces, including building and pavement surfaces, typically absorb solar radiation faster than pervious land coverings (grass, trees). This absorbed energy is typically retained throughout the day and then released slowly during the night. Consequently, ambient temperatures near building and paved areas are higher than grasslands and forest areas. The effects of higher levels of impervious surfaces impact not only large cities, but smaller cities and towns as well. Increases in impervious cover can also dramatically increase the impact of so-called 100-year flood events. Typically, floods in areas of high impervious surfaces are short-lived, but extended flooding can stress trees, leading to leaf yellowing, defoliation, and crown dieback. If damage is severe, mortality can occur. In addition, flooding can lead to secondary attacks by insect pests and diseases. Some species are more tolerant of flooding than others.

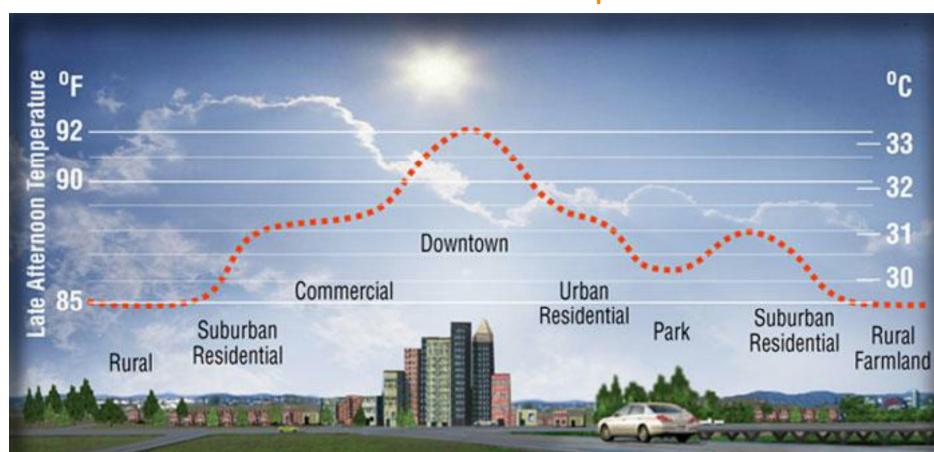
Impervious Coverage

Community	Impervious Surface	% tile
Blue Island	41%	88%
Deerfield	30%	38%
Evanston	40%	75%
Glenview	31%	50%
Highland Park	21%	13%
Oak Park	43%	100%
Park Forest	25%	25%
Northbrook	32%	63%

Source: Chicago Region Trees Initiative

Heat Island and Micro Heat Island

Residents of cities and town centers are more at risk for heat-related illnesses than rural dwellers. The radiant heat trapped by impervious surfaces and buildings as well as heat generated by building mechanical systems, motorized equipment, and vehicles is known as the "Heat Island Effect". In larger cities, heat island effects create a micro-climate throughout the metro area while occupants of smaller cities and towns can still experience higher temperatures and decreased air movement due to the effects of surrounding buildings and impervious surfaces in what is sometimes referred to as "Micro Heat Islands" which refers to urban hot spots such as poorly vegetated parking lots, non-reflective roofs and asphalt roads.


Both the heat island effect of larger cities and the micro heat islands of smaller cities (or portions of communities) serve to increase the impact of climate change effects in developed areas of all size populations, especially those with low or intermittent tree canopy coverage. A developed area's impervious surface characteristics, and tree canopy conditions combine to exacerbate or mitigate the community's heat island or micro heat island impacts.

Due to the heat island effect, developed areas are usually hotter and cool off less at night than non developed areas. Heat islands can increase health risks from extreme heat by increasing the potential maximum temperatures residents are exposed to and the length of time that they are exposed to elevated temperatures. The heat island effect can make developed areas one hardiness zone warmer than the surrounding undeveloped area, allowing some more southern species to be planted. In addition to milder winters, however, heat island effects can also make summer temperatures higher, especially near dark pavements and buildings. Thus, some native plants that are becoming marginal for the area because of increased heat could experience negative effects.

Agricultural Heat Island

Research indicates that in rural areas or regions with significant agriculture, crops can impact heat island effect. Unlike many plants, corn transpires, or sweats, both day and night. Keeping humidity and heat high at night means there is little chance for relief. A University of Minnesota study released in 2016 shows farm crops can increase dew points and heat indices by as much as 5 degrees, while a Northern Illinois University climatologist David Changnon released a study in 2002 showing that modern-day heat waves probably are worse than a century ago because of crops.

Illustration of Heat Island and Micro-Heat Island Impacts

Graphic Source: Lawrence Berkeley National Laboratory

Climate Impact Multipliers

Water Stress

Water stress occurs when the demand for water exceeds the available amount during a certain period or when poor quality restricts its use. Water stress causes deterioration of fresh water resources in terms of quantity (aquifer over-exploitation, dry rivers, etc.) and quality (eutrophication, organic matter pollution, saline intrusion, etc.). Overall water risks are impacted by projected changes in precipitation levels, seasonal and annual variability, flood and drought vulnerabilities, increased air and water temperature, and water use demand and supply.

Though most of these water stress influences are direct climate impacts, we call Water Stress a climate multiplier because the existence of water stress can greatly increase the overall impact of climate conditions such as extreme heat and overall population vulnerability. It has economic ramifications for individuals as well as the community as a whole which decrease resilience. Water stress affects recreational tourism, industrial productions, jobs, and income.

Water stress in developed areas is directly affected by a community's impervious surface, tree canopy/ground cover, and heat island characteristics. Higher temperatures and impervious surface run-off lead to increases in toxic algae blooms, more rapid evaporation, reduced water retention within the water table, increased demand for irrigation, and decreased lake/river levels. A review of a community's water stress includes the overall water stress, overall water risk, and flood vulnerability.

Overall water stress measures the ratio of total annual water withdrawals to total available annual renewable supply. This number accounts for upstream consumptive use. Higher values indicate more competition among users. Increases in projected water stress into the future indicate a potential for water shortage, conflict, or management challenge.

Overall water risk identifies areas with higher exposure to water-related risks and is an aggregated measure of physical risks related to quantity (flooding, drought, etc), physical risks related to water quality that may impact water availability (such as the percentage of available water that has been previously used and discharged upstream as wastewater where higher values indicate higher dependency on treatment plants and potentially poor water quality in areas that lack sufficient treatment infrastructure), and water regulatory and conflict risks.

As indicated by the inclusion of upstream conditions in the overall water risk calculation, it is extremely important to note that upstream communities can impact the water risk and stress of downstream communities. Failure to implement appropriate storm water management, flood management, and water conservation policies in one community can greatly impact the water stress of communities down stream. As a highly precious resource, all communities should look to increase water conservation regardless of the projected water stress levels of their immediate region, while communities in regions with a projected increase in water stress should view water conservation as a major long-term priority.

Climate Impact Multipliers

Water Stress (current)

Baseline water stress measures the ratio of total annual water withdrawals to total available annual renewable supply, accounting for upstream consumptive use. Higher values indicate more competition among users.

The current water stress in Northbrook is “Low”

(Source: World Resources Institute)

Water Stress

Overall Water Risk Quantity (current)

Physical risks quantity measures risk related to too little or too much water, by aggregating all selected indicators from the Physical Risk Quantity category. Higher values indicate higher water quantity risks.

The current water stress in Northbrook is “Medium-High”

(Source: World Resources Institute)

Physical Risks Quantity


Overall Water Risk Quality (current)

Physical risks quality measures risk related to water that is unfit for use, by aggregating all selected indicators from the Physical Risk Quality category. Higher values indicate higher water quality risks.

The current water risk in Northbrook is “Low-Medium”

(Source: World Resources Institute)

Physical Risks Quality

Drought Risk (current)

Drought risk measures where droughts are likely to occur, the population and assets exposed, and the vulnerability of the population and assets to adverse effects. Higher values indicate higher risk of drought.

The current drought risk in Northbrook is “Medium”

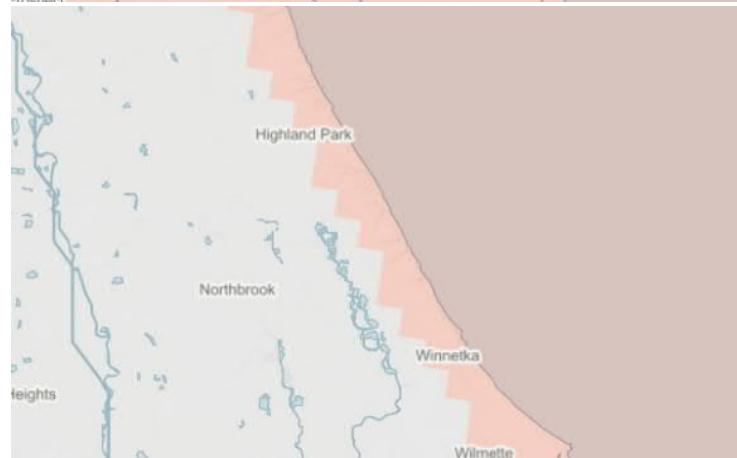
(Source: World Resources Institute)

Drought Risk

Climate Impact Multipliers

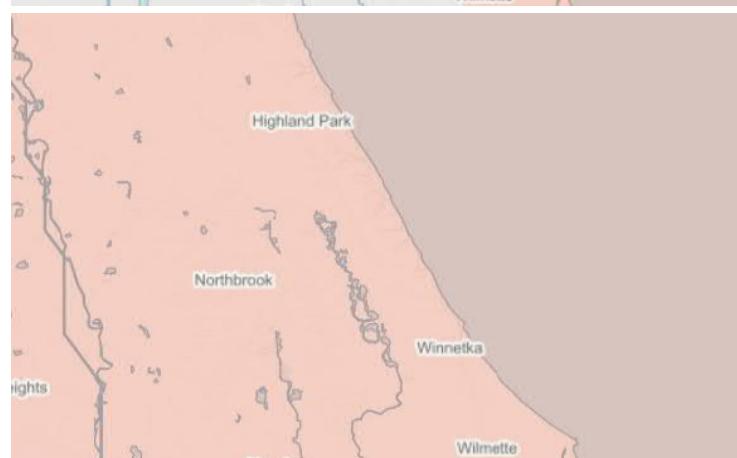
Projected Water Stress (through 2040)

Water stress is an indicator of competition for water resources and is defined informally as the ratio of demand for water by human society divided by available water.


The projected water stress in Northbrook is “1.4–2x increase” (Source: World Resources Institute)

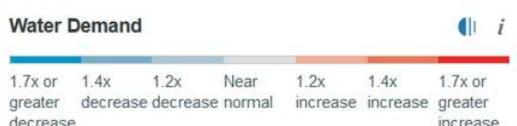
Projected Seasonal Variability (Through 2040)

Seasonal variability (SV) is an indicator of the variability between months of the year. Increasing SV may indicate wetter wet months and drier dry months, and higher likelihood of droughts or wet periods. We used the within-year coefficient of variance between monthly total blue water as our indicator of seasonal variability of water supply.


The projected variability in Northbrook is “near normal” (Source: World Resources Institute)

Projected Water Supply (Through 2040)

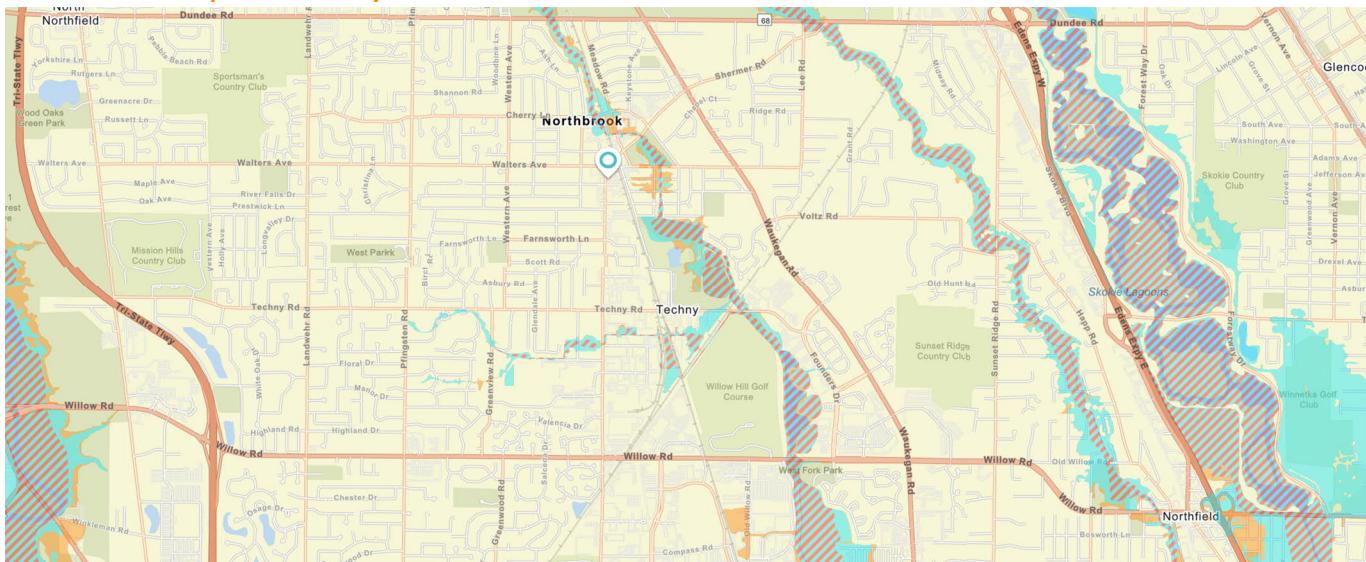
Total blue water (renewable surface water) was our indicator of water supply. Projected change in total blue water is equal to the 21-year mean around the target year divided by the baseline period of 1950–2010.


The projected water supply in Northbrook is “1.2x decrease” (Source: World Resources Institute)

Projected Water Demand (Through 2040)

Water demand was measured as water withdrawals. Projected change in water withdrawals is equal to the summarized withdrawals for the target year, divided by the baseline year, 2010.

The projected water demand in Northbrook is “near normal” (Source: World Resources Institute)


Climate Impact Multipliers

Northbrook Flood Vulnerability

According to the US National Climate Assessment, the ten rainiest days can contribute up to 40% of the annual precipitation in the Illinois region. By 2070, the Northbrook area can anticipate an increase of 15% in the total annual precipitation. In addition, the timeframe between rains is expected to continue to increase, (source US National Climate Assessment). Under this scenario, it is likely that certain periods of the year, like spring, may be significantly wetter with storms producing heavier rains. In anticipation of that, it is appropriate to review the areas of the Village with flood risk and to review current storm water management capacity against future extreme rainfall event projections.

The map shows the flood risk areas throughout the Village as defined by FEMA. Flood risks illustrated relate to water surface elevations for 1% chance annual floods ("100 year flood event"). Areas shown relate to existing bodies of water as well as potential "flash flood" zones in low-lying areas.

Flood Hazard Map As Defined By FEMA

Flood Hazard Zones

- 1% Annual Chance Flood Hazard
- Regulatory Floodway
- Special Floodway
- Area of Undetermined Flood Hazard
- 0.2% Annual Chance Flood Hazard
- Future Conditions 1% Annual Chance Flood Hazard
- Area with Reduced Risk Due to Levee

\$ 1.06 M

Total Flood Losses In The Community

146

Total Current Policies In The Community

\$ 9,546

Total Average Claim Amount In The Community

S e c t i o n

08

**Climate Resilience
Indicators**

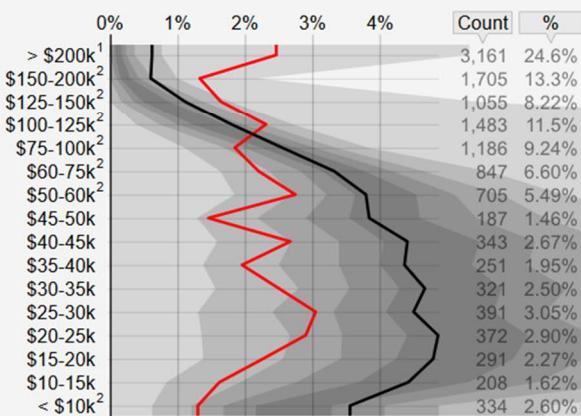
Climate Resilience Indicators

Similar to Climate Impact Multipliers, a community's overall resilience can have a multiplying or a mitigating affect on the population's ability to adapt to climate risks and rapidly recover from extreme weather events. Understanding and tracking the state of these Resilience Indicators will help identify some of the climate adaptive strategies appropriate for the Village.

Resilience Indicators include: Economic Stress, Health Indicators, EPA Environmental Justice Screen, EPA Social Vulnerability Index, Housing Burden.

Climate Resilience Indicators - Economic Stress

Economic stress within communities function as an impact multiplier. The issue is not limited to individuals – communities with large lower incomes or low tax bases, or low tax rates, can have a lag in infrastructure planning, maintenance, and redevelopment. These stressors on a city's planning capacity or activity decrease the ability for a community to prepare for and respond to climate stresses and vulnerabilities. In addition, a report by the World Health Organization points out that disadvantaged communities are likely to shoulder a disproportionate share of the burden of climate change because of their increased exposure and vulnerability to health threats.


Household Income Distribution #7

Normalized with respect to a standard interval of \$5k. Gray areas represent percentile bands from the places in Illinois.

Scope: households in Illinois, Northbrook, and other places in Illinois

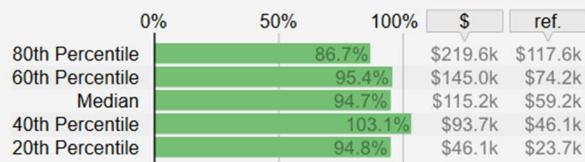
— Northbrook — Illinois

Percentile:
 0th - 100th
 20th - 80th
 30th - 70th
 40th - 60th

Count number of households with incomes in the interval

% unnormalized percentage of households with incomes in the interval

¹ normalized assuming interval of \$50k


² normalized

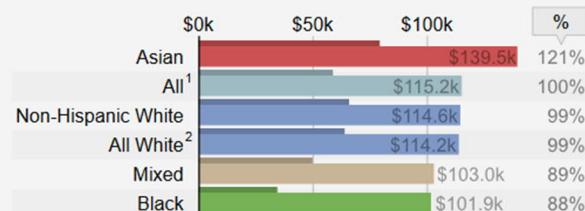
Source: Statistical Atlas

Relative Household Income Percentiles #2

Selected measures of household income in Northbrook, as a percentage more or less than Illinois at large.

Scope: households in Illinois and Northbrook

\$ given measure of household income in Northbrook


ref. given measure of household income in Illinois

Source: Statistical Atlas

Median Household Income by Race #8

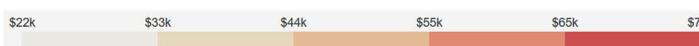
Scope: households in Illinois and Northbrook

— Northbrook — Illinois

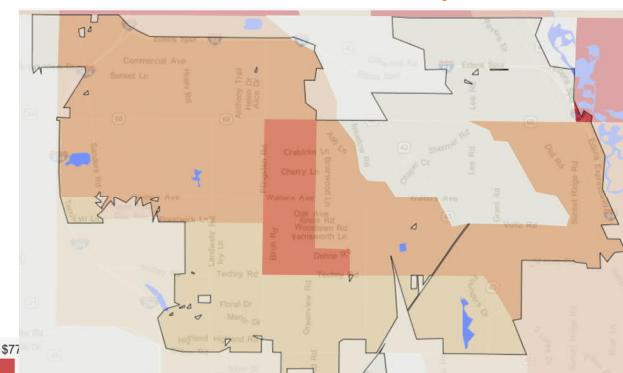
% as percentage of median household income of the entire population

¹ entire population ² including Hispanic whites

³ American Indian and Alaska Native


⁴ and other Pacific Islander

Source: Statistical Atlas


Median Household Income: \$119,568

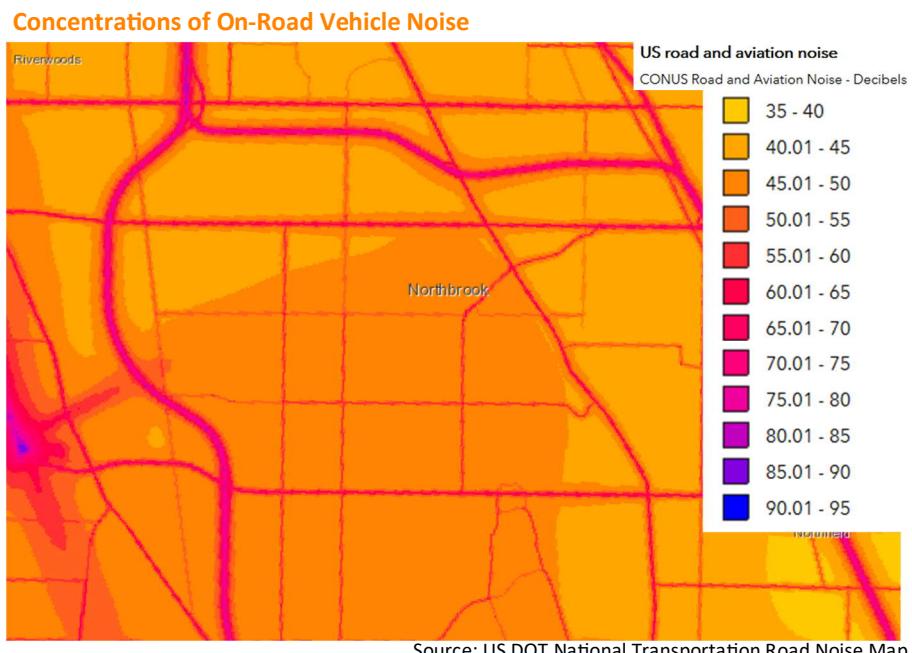
Poverty Rate: 2.91%

The map to the right shows the household income level at the 20th percentile by census tract. Tracts with 20th percentile at or below \$33,000 indicate potentially high poverty rates while tracts at or below \$45,000 indicate potentially high low income rates.

Household Income at 20th Percentile by Census Tract

Climate Resilience Indicators—Health

The potential magnitude of the population climate risks outlined in section 6 “Climate Risks to The Population” can be anticipated by understanding current community resilience indicators. Resilience indicators which are higher locally than State or National averages may imply a potential weakness which could be exacerbated by the risks posed by projected climate change.

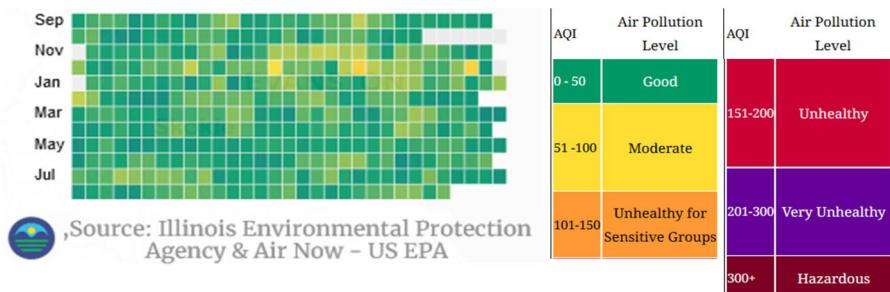

On the other hand, it should be understood that these community resilience indicators are usually only available at the granularity of County level. This means that the Village should carefully consider potential implications for any community resilience indicator even if the local demographic appears "stronger" (lower percentage/value/percentile) than State or National levels.

	State	County
Poor/Fair Health	17%	18%
Uninsured	7%	9%
Asthma Prevalence (% of pop)	8.7%	9.8%
COPD Prevalence (% of pop)	5.9%	5.2%
Heart Attack Prevalence (% of pop)	4.1%	3.8%
Frequent Physical Distress	11%	11%
Frequent Mental Distress	10%	11%

(Source: County Health Rankings & Roadmaps program, CDC, United Health Foundation, Illinois Department of Public Health)

Climate Resilience Indicators - Health and Heavy Traffic

Vehicles are a significant and widespread source of air and noise pollution in Illinois communities. Heavy traffic and busy roads increase the relative health risks caused by all air pollutants coming from cars, trucks, and buses. When it gets hot outside, the impacts of pollution on health are even worse. Hotter summers influenced by climate change may mean more health problems for people living, working, or going to school in communities near major roadways. People who live, work, or attend schools near high-traffic roadways are more exposed to traffic-associated air pollutants. Even people passing through these areas while commuting, walking, or biking are more at risk.



The map above shows concentrations of on-road vehicle noise, and potential particulate matter pollution distribution in the city. Darker areas indicate higher air pollution and, subsequently, those locations pose greater risk to human health.

(Source: US Department of Transportation)

Climate Resilience Indicators - Particulate Matter PM 2.5 12 Month History

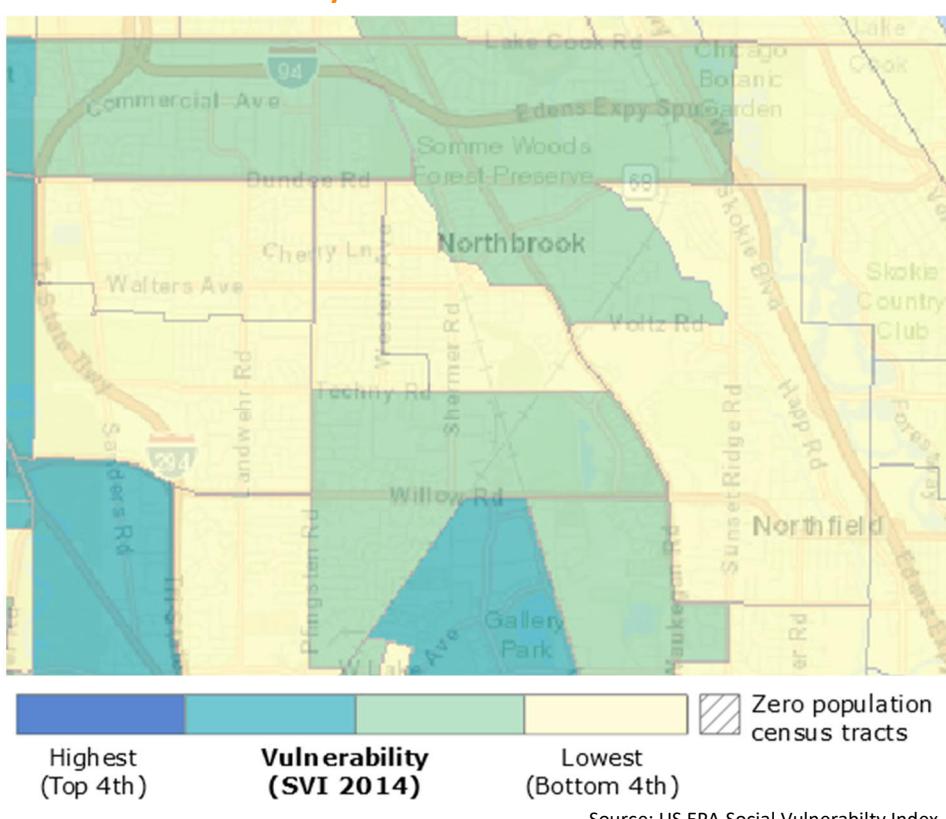
The chart to the right shows the locally recorded Fine Particulate Matter (PM 2.5) which comes primarily from combustion sources such as vehicles.

Climate Resilience Indicators- EPA Environmental Justice Screen

EJSCREEN is an environmental justice mapping and screening tool that provides EPA with a nationally consistent data set and approach for combining environmental and demographic indicators. All of the EJSCREEN indicators are publicly-available data. EJSCREEN simply provides a way to display this information and includes a method for combining environmental and demographic indicators into EJ indexes. Below are the EJSCREEN results for the Village. All values circled in orange are values in the upper 40th percentile for the State, representing areas of potential focus for the Village.

Selected Variables	Value	State Avg.	%ile in State	EPA Region Avg.	%ile in EPA Region	USA Avg.	%ile in USA
Environmental Indicators							
Particulate Matter (PM 2.5 in $\mu\text{g}/\text{m}^3$)	9.29	9.25	46	8.63	69	8.3	77
Ozone (ppb)	46	44.8	93	43.4	85	43	73
NATA* Diesel PM ($\mu\text{g}/\text{m}^3$)	0.743	0.669	64	0.446	80-90th	0.479	80-90th
NATA* Cancer Risk (lifetime risk per million)	34	33	64	26	90-95th	32	60-70th
NATA* Respiratory Hazard Index	0.45	0.42	63	0.34	80-90th	0.44	50-60th
Traffic Proximity and Volume (daily traffic count/distance to road)	340	630	63	530	65	750	59
Lead Paint Indicator (% Pre-1960 Housing)	0.39	0.41	50	0.38	58	0.28	69
Superfund Proximity (site count/km distance)	0.038	0.095	32	0.13	30	0.13	33
RMP Proximity (facility count/km distance)	0.37	1.2	36	0.82	50	0.74	54
Hazardous Waste Proximity (facility count/km distance)	2	2	66	1.5	75	4	77
Wastewater Discharge Indicator (toxicity-weighted concentration/m distance)	0.21	1.7	75	0.82	90	14	91

* The National-Scale Air Toxics Assessment (NATA) is EPA's ongoing, comprehensive evaluation of air toxics in the United States. EPA developed the NATA to prioritize air toxics, emission sources, and locations of interest for further study. It is important to remember that NATA provides broad estimates of health risks over geographic areas of the country, not definitive risks to specific individuals or locations. More information on the NATA analysis can be found at: <https://www.epa.gov/national-air-toxics-assessment>.


Climate Resilience Indicators - EPA Social Vulnerability Index

Social Vulnerability Index

Social vulnerability refers to the resilience of communities when confronted by external stresses on human health, stresses such as natural or human-caused disasters, or disease outbreaks. Reducing social vulnerability can decrease both human suffering and economic loss.

The Social Vulnerability Index (SVI) compares and ranks every community in the United States at the Census Tract level. Factors include poverty, lack of car access, and crowded housing. The SVI is developed by the Centers for Disease Control. The Village of Northbrook has areas in three of the four levels of vulnerability (lowest quartile through to second highest quartile)

EPA Social Vulnerability Index

Climate Resilience Indicators - Housing Burden

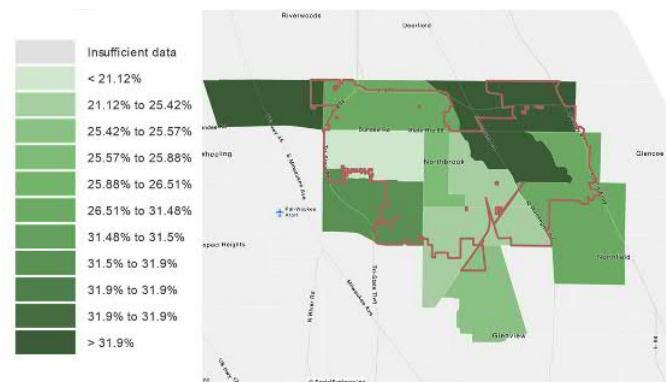
Housing burden can be understood as a household living with any of four housing problems: overcrowding, high housing cost, no kitchen, no plumbing. Households with housing burden can occur at any income level, though they may be more common in middle to lower income brackets. Housing burden factors, like other economic stress indicators, can challenge a household's capacity to respond to emergencies increasing that household's climate vulnerability.

According to the US Census Bureau, the average monthly rent in Northbrook is over \$1,750. The Census indicates Northbrook has 3,968 renter occupied housing units total. Over 42% are households living with a housing cost burden of over 30% and of those nearly 57% (23.8% of all renter occupied households) are living with a housing costs totaling 50% or more of their income.

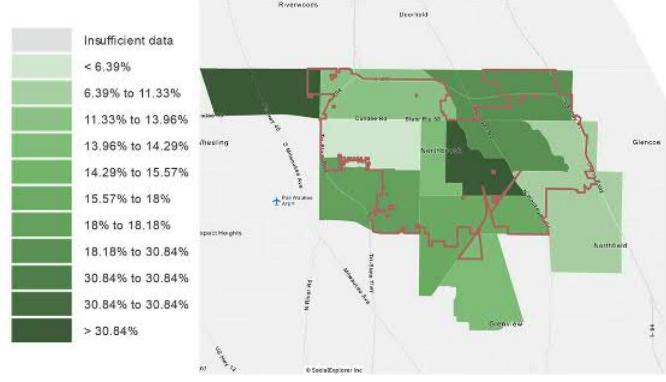
Northbrook has a total of 17,547 owner occupied housing units. Of those households, 41.2% are living with housing cost burden of over 30% with 1/3rd of those living with a housing costs totaling 50% or more of their income. See maps to the right for the distribution of these households throughout the community.

Housing Type Impacts on Housing Burden

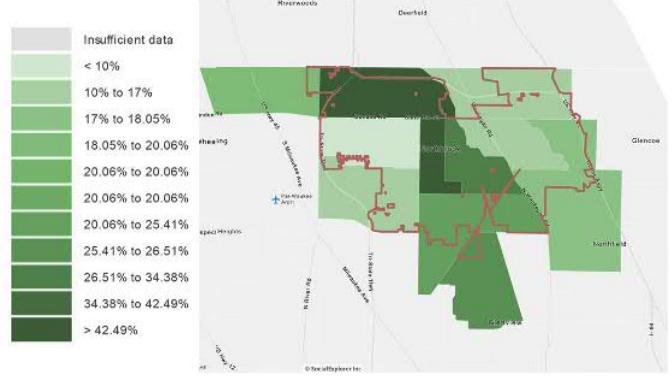
The type of structure a resident lives in can impact the level of housing burden experienced by community members.


According to a 2005 study by the US Housing and Urban Development Agency, renters, on average, have 10% more of their monthly income going to utility costs. Those who live in mobile home type constructions often pay even more.

The Environmental and Energy Study Institute, indicates that mobile homes built before 1980 consume an average of 84,316 BTUs per square foot, 53 percent more than other types of homes. A study by the energy consultant group Frontier Associates found that residents in older manufactured homes may pay up to \$500 a month for electricity, or over 24% of average monthly income. Mobile homes are also less resilient to extreme temperatures, extreme weather, high winds, and tornado events.

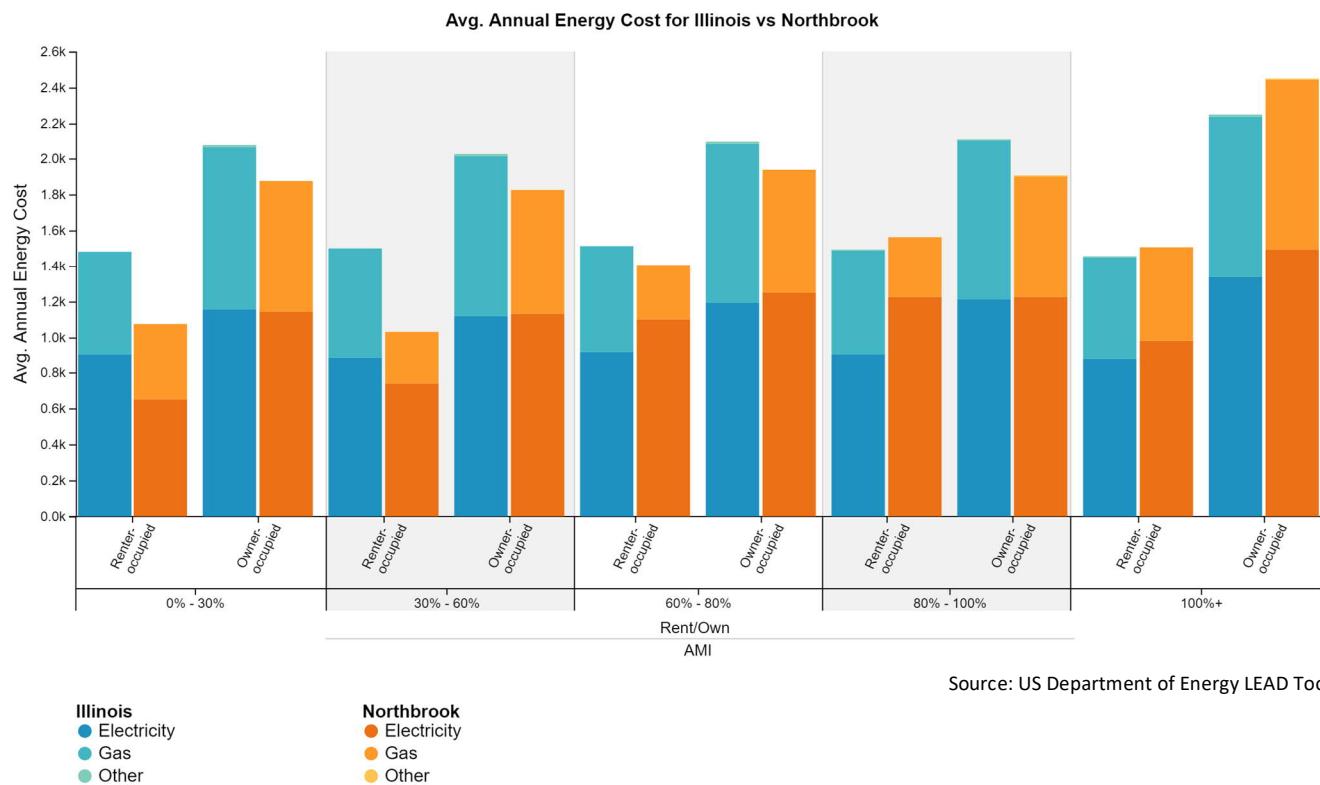

Northbrook Housing by Type and Occupancy

Housing Type	Housing Units			Owner-Occupied			Renter-Occupied		
	Number	% of Total	State Ave	Number	% of Total	State Ave	Number	% of Total	State Ave
1, detached	9,074	70.10%	60.30%	8,482	76.40%	79.50%	592	32.10%	23.00%
1, attached	1,566	12.10%	6.00%	1,388	12.50%	6.60%	175	9.50%	4.80%
2 apartments	13	0.10%	5.10%	11	0.10%	2.50%	0	0.00%	10.30%
3 or 4 apartments	52	0.40%	6.10%	44	0.40%	2.00%	9	0.50%	14.10%
5 to 9 apartments	194	1.50%	6.20%	67	0.60%	1.60%	120	6.50%	15.00%
10 or more apartments	2,032	15.70%	14.00%	1,088	9.80%	5.30%	947	51.40%	31.00%
Mobile home	13	0.10%	2.30%	11	0.10%	2.50%	0	0.00%	1.80%
Total Occupied Units (Source: US Census Bureau)	12,945			11,102	85.8%	66.0%	1,843	14.2%	34.0%


Northbrook Homeowners Paying More Than 30% of Income for Housing Costs

Northbrook Renters Paying 30%-49% of Income for Housing Costs

Northbrook Renters Paying >50% of Income for Housing Costs

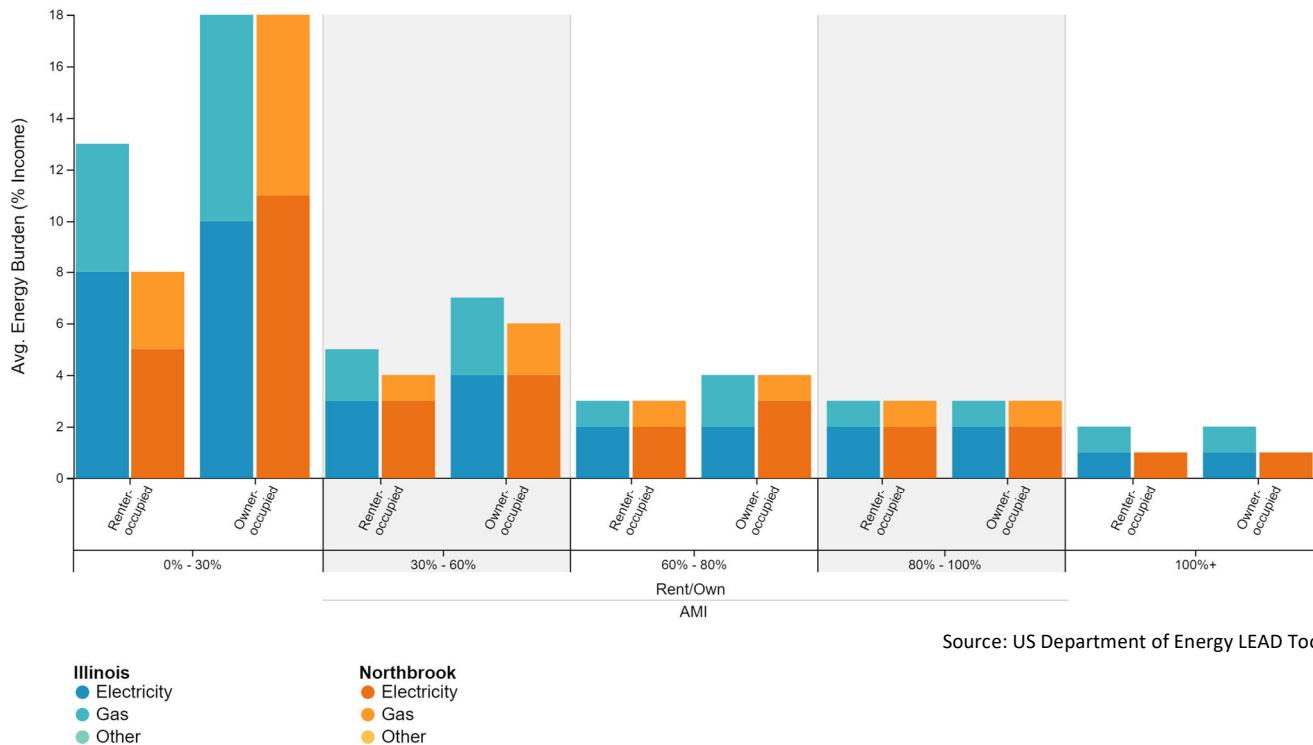


Climate Resilience Indicators– Energy Burden

“Energy Burden” is the percentage of household income that goes toward energy costs (electricity, home heating, and transportation). Individuals with lower incomes have a much higher likelihood of living under an energy burden—not only because the energy costs experienced by a lower income household must be paid for out of a smaller income, but also because lower income individuals frequently live in homes with higher energy costs due to older building age or lower levels of insulation and energy equipment efficiency.

Higher energy burdens have real implications on the health and well-being of families and individuals. Families who have to devote higher proportions of their income to utility bills may have to make trade-offs between heating and cooling their homes or affording other necessities, such as food, medicine, and childcare. According to the US Census (2011–2016), the national average energy burden for low-income households is 8.6 percent compared with less than 3% for non-low-income households.

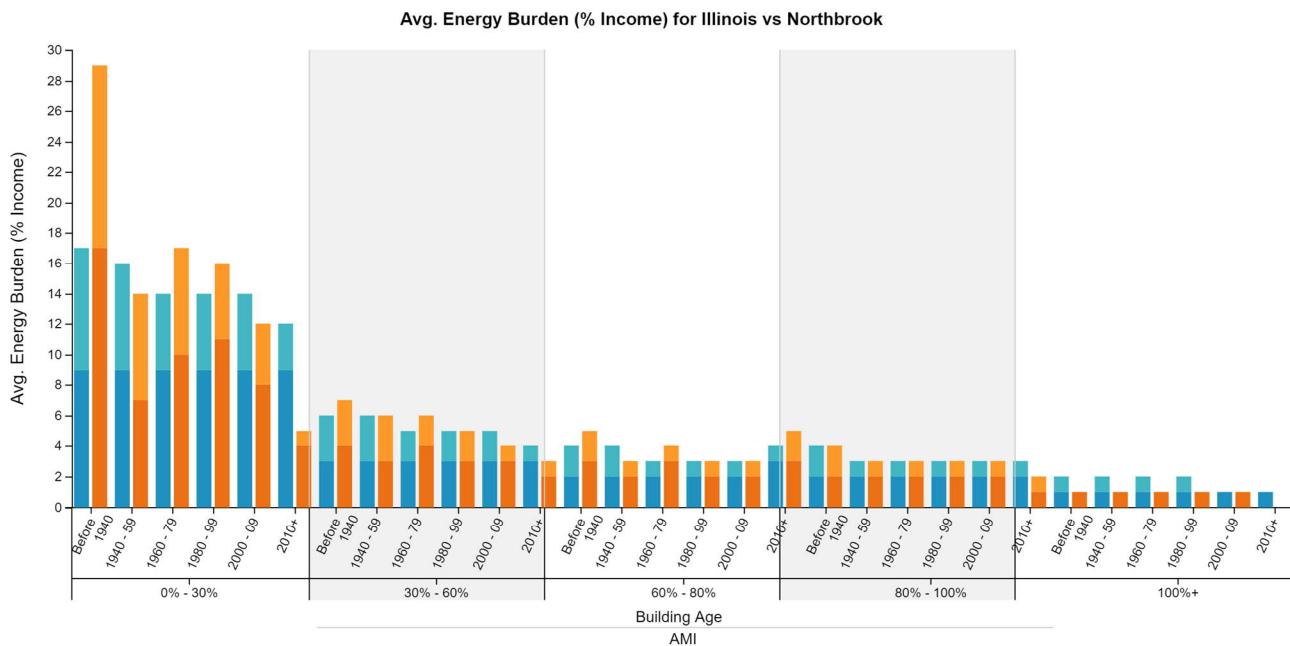
According to the US Department of Energy, average annual energy costs in Northbrook range from just over \$1,000 for households in the lowest income brackets (0-30% Area Median Income) to \$2,400 in the highest income brackets (100%+ area median income). See chart below for a comparison of Northbrook energy costs against State averages:



Comparing those costs against the annual household income identifies the community members living with high energy burden. In Northbrook, the energy burden for households below 30% AMI is 8% for renters and 18% for home owners while the energy burden for households at 100% AMI and above drops to 1%....less than 6% of the energy cost impacts on households.

Climate Resilience Indicators– Energy Burden

Avg. Energy Burden (% Income) for Illinois vs Northbrook



Source: US Department of Energy LEAD Tool

Illinois
 ● Electricity
 ● Gas
 ● Other

Northbrook
 ● Electricity
 ● Gas
 ● Other

Energy costs as a percentage of household income for rental and owner occupied households in Northbrook compared against State averages (see Ave Energy Burden for Illinois vs Northbrook above) can be broken down further by building age which can help identify the households and building type/ages which are most likely living under high energy burden. This data illustrates that households in the lowest income brackets (0-30% AMI) in homes built prior to 2010 are living with

Source: US Department of Energy LEAD Tool

Illinois
 ● Electricity
 ● Gas
 ● Other

Northbrook
 ● Electricity
 ● Gas
 ● Other

Section

09

**Vulnerable
Populations**

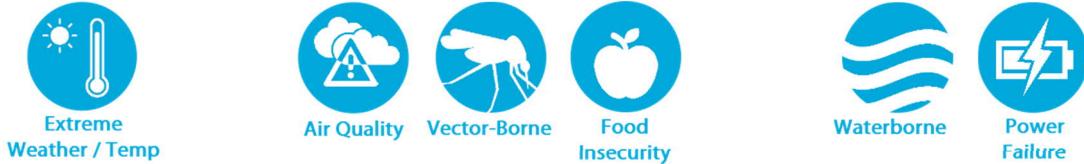
Vulnerable Populations in Northbrook

Some groups face a number of stressors related to both climate and non-climate factors. For example, people living in impoverished urban or isolated rural areas, floodplains, and other at-risk locations such as areas of current or historically high levels of toxic chemical pollution are more vulnerable not only to extreme weather and persistent climate change but also to social and economic stressors. Many of these stressors can occur simultaneously or consecutively.

People or communities can have greater or lesser vulnerability to health risks depending on age, social, political, and economic factors that are collectively known as social determinants of health. Some groups are disproportionately disadvantaged by social determinants of health that limit resources and opportunities for health-promoting behaviors and conditions of daily life, such as living/working circumstances and access to healthcare services. Populations of concern are particularly vulnerable to climate change impacts. Heightened vulnerability to existing and projected climate impacts can be due to a sector of the population's exposure, sensitivity, or adaptive capacity to a climate impact.

Who is Most Vulnerable?

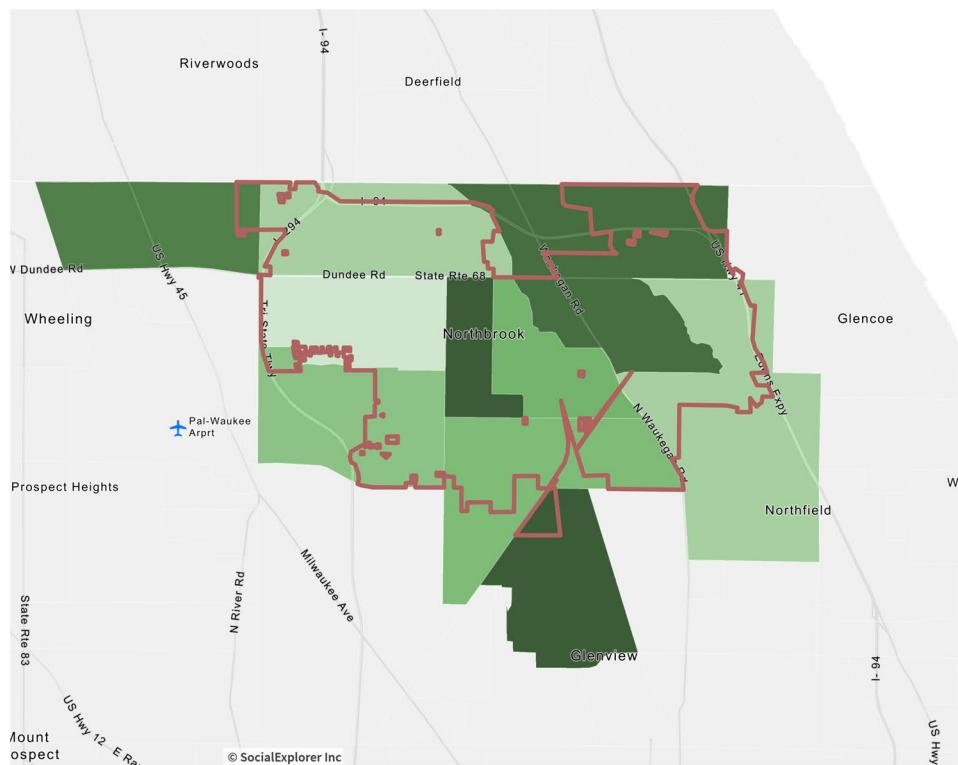
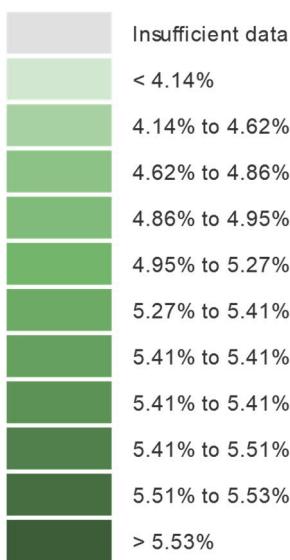
Across the United States, people and communities differ in their exposures, their inherent sensitivity, and their capacity to respond to and cope with climate change related threats. Community members who are most vulnerable include:


The following pages map the populations particularly vulnerable to the risks of climate change impacts within the community.

Vulnerable Populations—Children

According to the US Global Change Research Program “Children are vulnerable to adverse health effects associated with environmental exposures due to factors related to their immature physiology and metabolism, their unique exposure pathways, their biological sensitivities, and limits to their adaptive capacity. Children have a proportionately higher intake of air, food, and water relative to their body weight compared to adults. They also share unique behaviors and interactions with their environment that may increase their exposure to environmental contaminants such as dust and other contaminants, such as pesticides, mold spores, and allergens.”

Children are particularly sensitive to the following Climate Risks (see Section 6 for Climate Risk information):

Map of Vulnerable Population Distribution Within Community

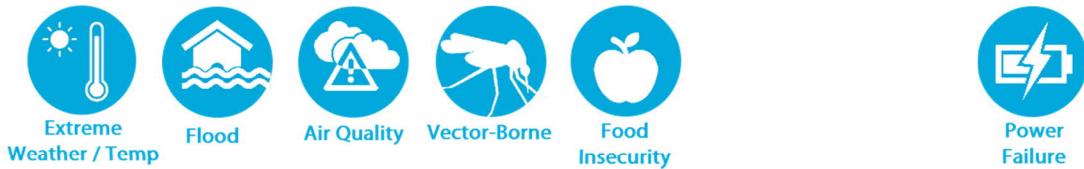
Children Under 5

Estimated Population Share

Source: American Community Survey
5-Year Estimates

Observations for Northbrook

The estimated total child population under five for Northbrook is 2,869. This vulnerable population makes up 5.3% of the Village's total population. Children under five are most concentrated in the Central, Northeast, and South Central sections of the Village. These sections represent both the highest estimated population as well as the highest share of the total population of these tracts - ranging from 5% and above of the total population of those neighborhoods.

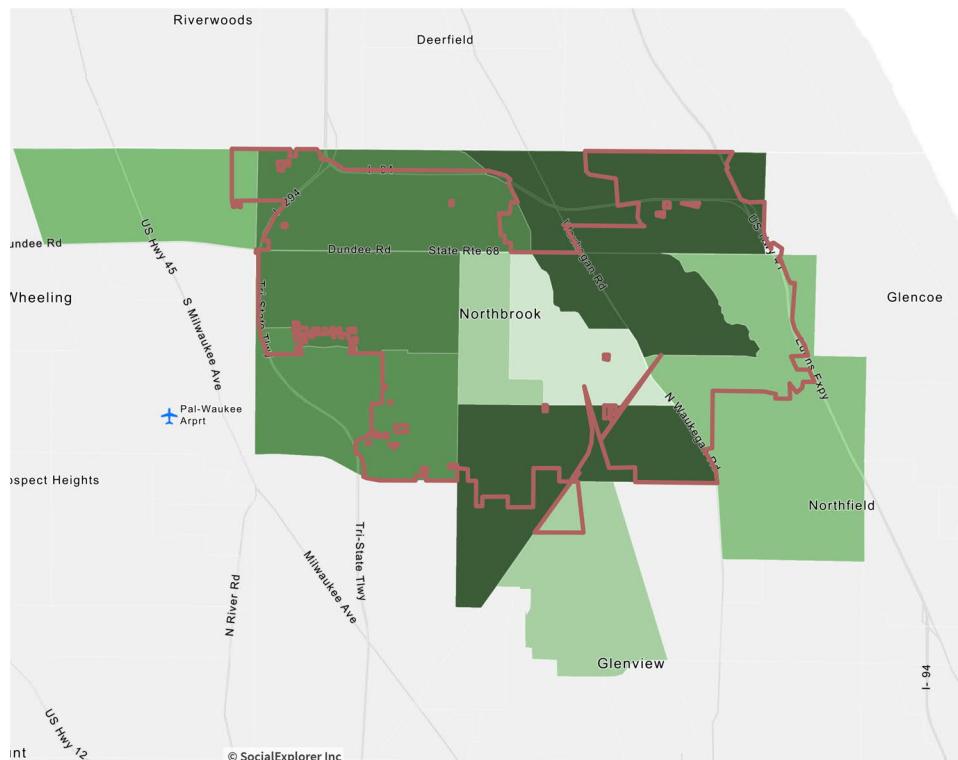
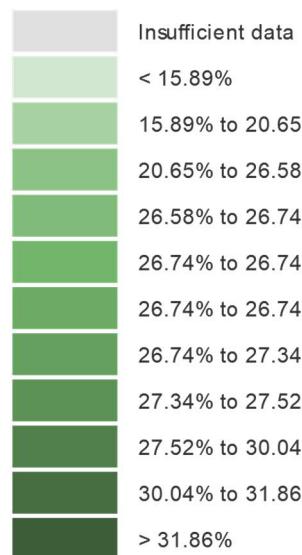

Children Under 5 Summary

Total Estimated Population:	2,869
Estimated Share of Total Vulnerable Population:	6-9%
Estimated Share of Total Village Population:	5.3%

Vulnerable Populations—Older Adults (65 and over)

Older adults are also vulnerable to the health impacts associated with climate change and weather extremes. Vulnerabilities within older adults are not uniform due to the fact that this demographic is a diverse group with distinct sub-populations that can be identified not only by age but also by race, educational attainment, socioeconomic status, social support networks, overall physical and mental health, and disability status. According to the US Global Change Research Program “the potential climate change related health impacts for older adults include rising temperatures and heat waves; increased risk of more intense floods, droughts, and wildfires; degraded air quality; exposure to infectious diseases; and other climate-related hazards.”

Older Adults are particularly sensitive to the following Climate Risks (see Section 6 for Climate Risk information):



Map of Vulnerable Population Distribution Within Community

Older Adults

Estimated Population Share

Source: American Community Survey

5-Year Estimates

Observations for Northbrook

The estimated total older adult population for Northbrook is 14,442. This vulnerable population makes up 26.6% of the Village's total population and 1/3rd or more of the total vulnerable population in the community. Older adults over 65 are most concentrated in the North Eastern and South Central sections of the Village. These sections represent both the highest estimated population as well as the highest share of the total population of these tracts - ranging from 52% to over 31% of the total population of those neighborhoods.

Older Adults Summary

Total Estimated Population:

14,442

Estimated Share of Total Vulnerable Population:

30-34%

Estimated Share of Total Village Population:

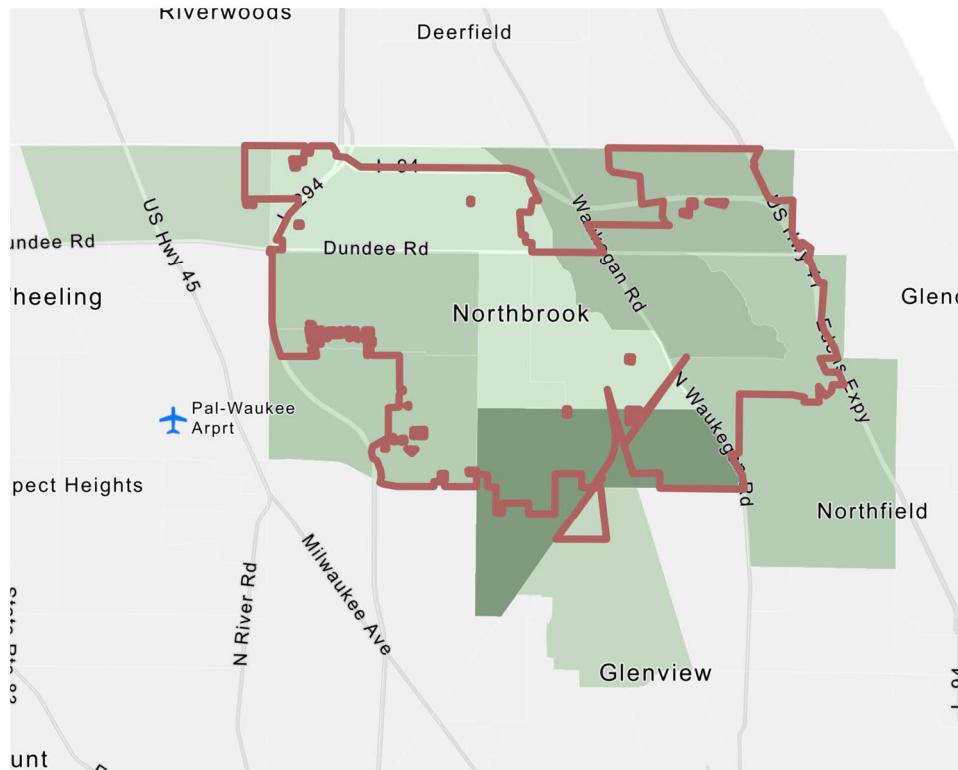
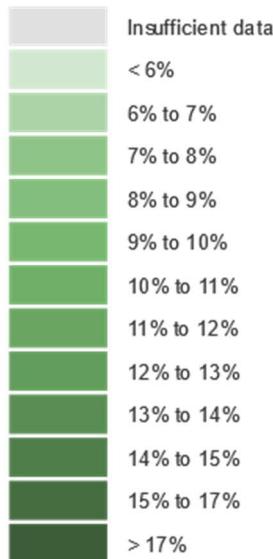
26.6%

Vulnerable Populations—Individuals with Disabilities

People with disabilities experience disproportionately higher rates of social risk factors, such as poverty and lower educational attainment, that contribute to poorer health outcomes during extreme events or climate-related emergencies.

These factors compound the risks posed by functional impairments and disrupt planning and emergency response. Of the climate-related health risks experienced by people with disabilities, perhaps the most fundamental is their “invisibility” to decision-makers and planners. Disability refers to any condition or impairment of the body or mind that limits a person’s ability to do certain activities or restricts a person’s participation in normal life activities, such as school, work, or recreation.

Individuals with disabilities are particularly sensitive to the following Risks (see Section 6 for Climate Risk information):

Map of Vulnerable Population Distribution Within Community

Individuals with Disabilities

Estimated Population Share

Source: American Community Survey
5-Year Estimates

Observations for Northbrook

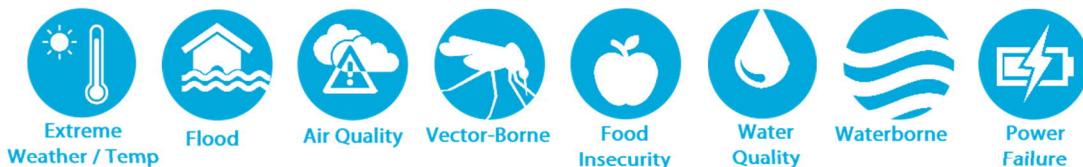
The estimated total population of individuals with disabilities for Northbrook is 5,363. This vulnerable population makes up 9.9% of the Village's total population. Individuals with disabilities make up approximately 1 in every 8 climate vulnerable individuals in the community. Individuals with disabilities are fairly evenly distributed throughout the Village, however, the South Central sections have the highest concentration based on share of population. These sections range from 10% to over 13% of the total population of those neighborhoods.

Individuals with Disabilities Summary

Total Estimated Population: **5,363**

Estimated Share of Total Vulnerable Population: **11-14%**

Estimated Share of Total Village Population: **9.9%**


Vulnerable Populations—Individuals In Economic Stress

Individuals and families living under economic stress, defined here as “low income” individuals (200% poverty level), are frequently the most adaptive demographic group in our communities. Those living under economic stress exhibit on-going adaptation capabilities simply navigating day-to-day challenges with less than needed resources. This adaptive capacity, however, is overwhelmed in times of emergency as lack of sufficient economic resources greatly reduce the range of options available in response to crisis. For those in poverty, weather-related disasters or family members falling ill can facilitate crippling economic shocks.

With limited economic adaptive capacity, this portion of our population is especially vulnerable to every projected climate impact. Frequently the most effective measures in avoiding extreme heat such as efficiently functioning air conditioning or high performing building enclosures are simply not available to those in poverty while many work in outdoor or industrial jobs which are particularly vulnerable to climate conditions. Diseases which may result from exposure to vector-borne, water-borne, and air-borne pathways may go untreated due to lack of medical access or ability to pay and may increase the level of economic stress due to missed work days or even loss of employment. Those living under economic stress usually carry a heavy housing cost burden, including higher utility costs. This burden can be exacerbated from damage sustained by their home in extreme weather or flooding events.

Those in economic stress are also frequently food insecure. In Illinois, food insecurity affects 1 in 9 people. Many of the projected climate change impacts are likely to effect agricultural production and distribution, which in turn, may cause spikes in food costs and increase food and nutrition insecurity among those in economic stress.

Individuals experiencing economic stress, defined as those at 200% poverty level (the common definition of “Low Income”) are particularly sensitive to the following Climate Risks:

Map of Vulnerable Population Distribution Within Community

See maps on next page.

Observations for Northbrook

The estimated total population in economic stress for Northbrook is 6,163. Those living in economic stress make up over 1 in 6 climate vulnerable individuals in the community. Individuals living in economic stress are most concentrated in the Northwest, Northeast, and South Central sections of the Village. These sections represent both the highest estimated economically stressed population as well as the highest share of the total population of these tracts - ranging from 12% up to 36% of the total population of those neighborhoods.

Individuals in Economic Stress Summary

Total Estimated Population: **6,163**

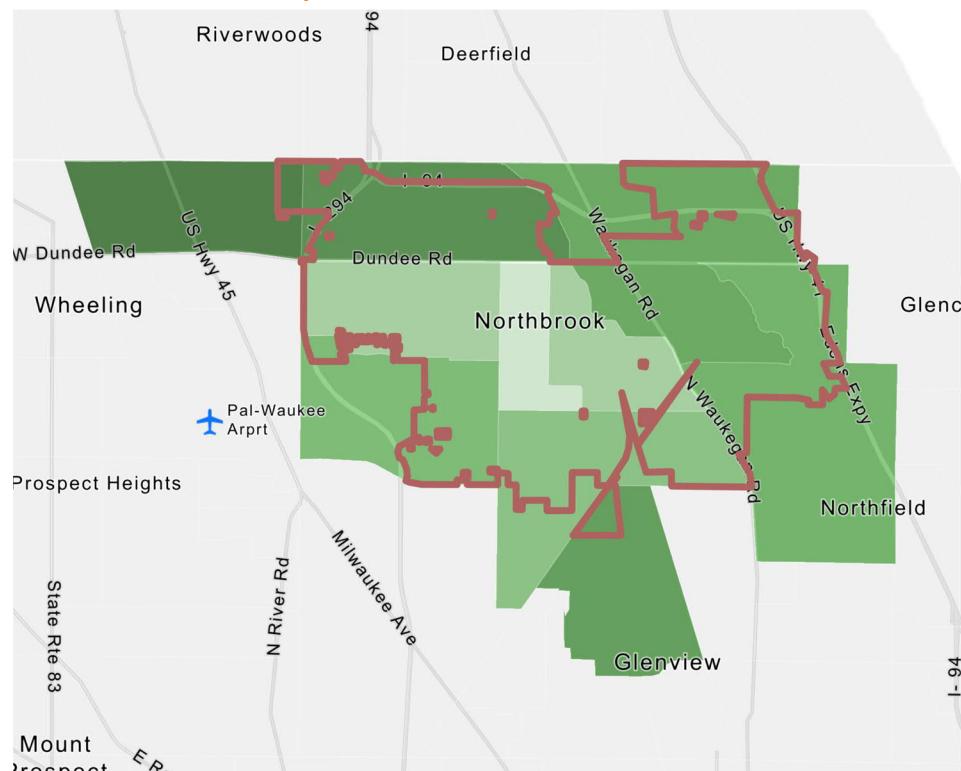
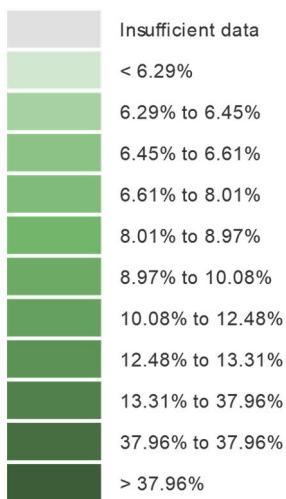
Estimated Share of Total Vulnerable Population: **14-18%**


Estimated Share of Total Village Population: **11.3%**

Vulnerable Populations—Individuals In Economic Stress (continued)

Poverty by Age and Gender

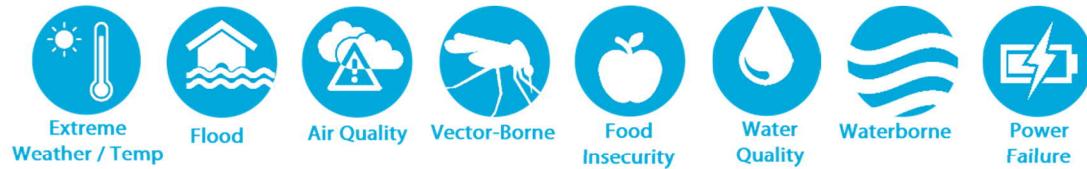
2.91% of the population in Northbrook live below the poverty line. The largest demographic living in poverty is female 75+, followed by male 25-34 and then female 25-34. The Census Bureau uses a set of money income thresholds that vary by family size and composition to determine who classifies is impoverished. If a family's total income is less than the family's threshold than that family and every individual in it is considered to be living in poverty.

Map of Vulnerable Population Distribution Within Community

Individuals in Economic Stress

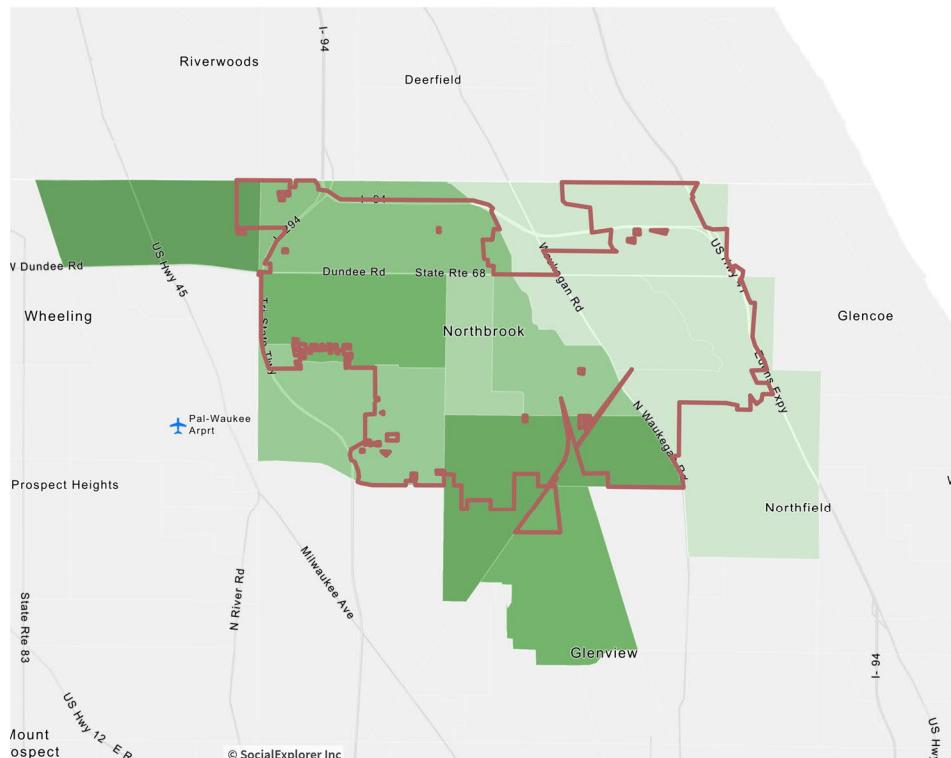
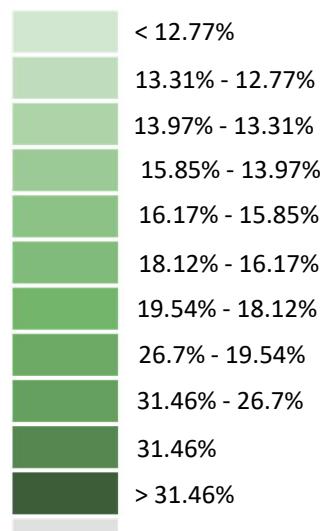
Estimated Population Share


Source: American Community Survey
5-Year Estimates

Vulnerable Populations—People of Color

These populations are at increased risk of exposure given their higher likelihood of living in risk-prone areas, areas with older or poorly maintained infrastructure, or areas with an increased burden of air pollution. In addition, according to the Center for Disease Control and the National Health Interview Survey these portions of our population also experience higher incidence of chronic medical conditions which can be exacerbated by climate change impacts. These populations may also be impeded from preparing, responding, and coping with climate related health risks due to socioeconomic and education factors, limited transportation, limited access to health education, and social isolation related to language barriers.

People of Color may be particularly sensitive to the following Climate Risks:

Map of Vulnerable Population Distribution Within Community

People of Color

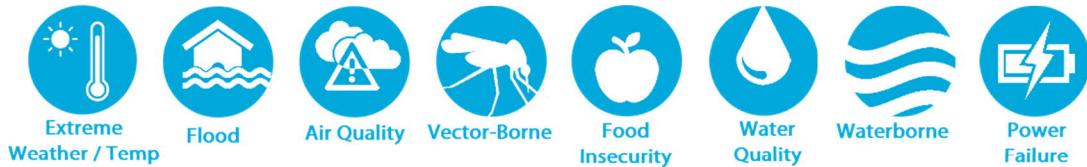
Estimated Population Share

Source: American Community Survey
5-Year Estimates

Observations for Northbrook

The estimated total people of color population for Northbrook is 10,021. This vulnerable population makes up 18.4% of the Village's total population and approximately 1/4th of the total vulnerable population in the community. People of color are most concentrated in the Northwest and South Central sections of the Village. These sections represent both the highest estimated population as well as the highest share of the total population of these tracts - ranging from 12.7% to over 31% of the total population of those neighborhoods.

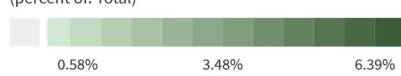
People of Color Summary


Total Estimated Population:	10,021
Estimated Share of Total Vulnerable Population:	22-28%
Estimated Share of Total Village Population:	18.4%

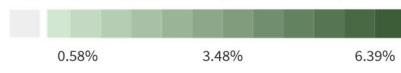
Vulnerable Populations—Limited English Speakers

Individuals with limited English language skills may be more socially isolated. Their limited English also likely limits their access to public information and notifications, potentially resulting in a knowledge gap related to community resources, programs, or education which may be relevant in preparing for and recovering from climate impacts. In addition, communication barriers may create challenges for limited English speakers in understanding critical information or instructions given in public address during an extreme weather event. Though not specifically a “person of color” category, individuals with limited English frequently overlap with populations of color, making this group potentially doubly vulnerable.

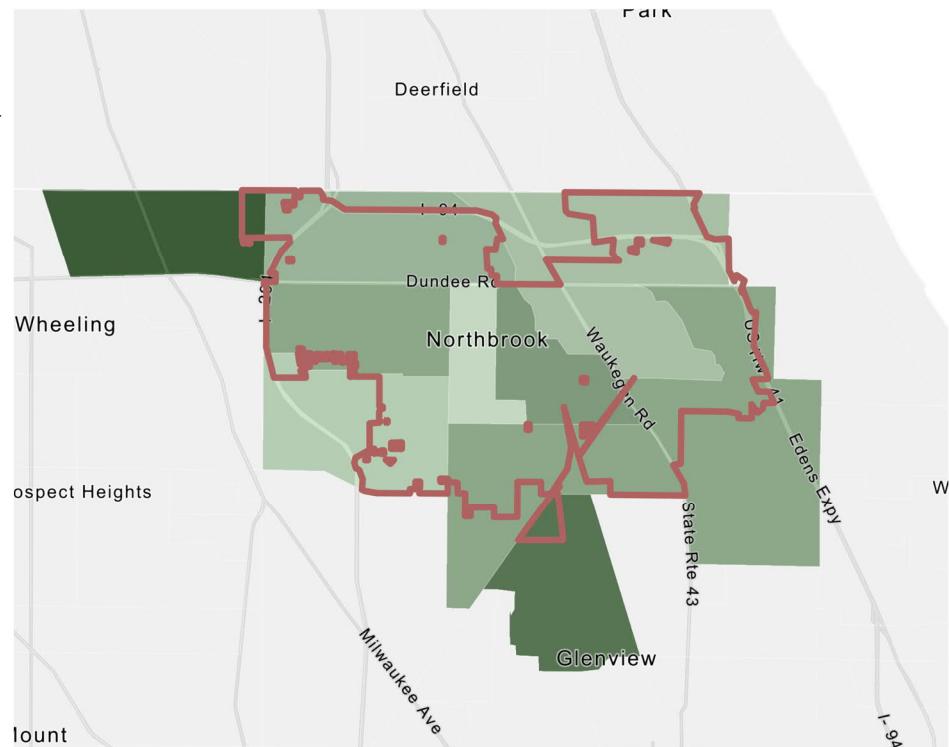
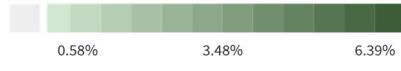
Limited English Speakers may be particularly sensitive to the following Climate Risks:


Map of Vulnerable Population Distribution Within Community

Limited English Speakers


Estimated Population Share

Source: American Community Survey 5-Year Estimates



% Total: Spanish: Limited English Speaking Household (percent of: Total)

% Total: Other Indo-European Languages: Limited English Speaking Household (percent of: Total)

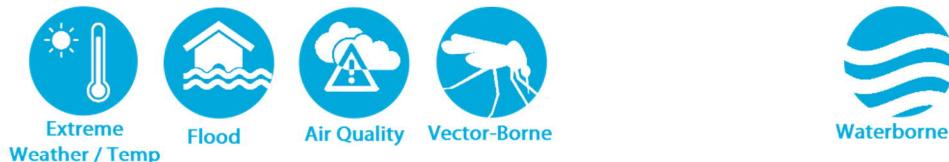
% Total: Asian And Pacific Island Languages: Limited English Speaking Household (percent of: Total)

Observations for Northbrook

The estimated total population of limited English speakers for Northbrook is 3,084. This vulnerable population makes up 5.7% of the Village's total population. Limited English speakers make up approximately 1 in every 12 climate vulnerable individuals in the community. Limited English speakers are most concentrated in the Northwest and South Central sections of the Village. These sections represent both the highest estimated population as well as the highest share of the total population of these tracts - ranging from 4.8% to over 14% of the total population of those neighborhoods.

Limited English Speakers Summary

Total Estimated Population: **3,084**


Estimated Share of Total Vulnerable Population: **6.9%**

Estimated Share of Total Village Population: **5.7%**

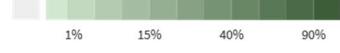
Vulnerable Populations—At Risk Workers

Climate change will increase the prevalence and severity of occupational hazards related to environmental exposure. As our climate changes, we may also experience the emergence of new work related risks. Climate change can be expected to affect the health of outdoor workers through increases in ambient temperature, more prevalent and longer-lasting heat waves, degraded air quality, extreme weather, vector-borne diseases, and industrial exposures. Workers affected by climate change include farmers, ranchers, and other agricultural workers; laborers exposed to hot indoor work environments; construction workers; paramedics, firefighters and other first responders; and transportation workers. For individuals employed in climate vulnerable jobs who also fall within other vulnerable population categories, the health effects of climate change can be cumulative. For these individuals, the risks experienced in their work can be exacerbated by exposures associated with poorly insulated housing and lack of air conditioning. Workers may also be exposed to adverse occupational and climate-related conditions that the general public may be more able to avoid, such as direct exposure to extreme heat, extreme weather events, low air quality, or wildfires.

Individuals employed in at-risk occupations may be particularly sensitive to the following Climate Risks:

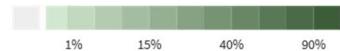
Map of Vulnerable Population Distribution Within Community

At-Risk Workers


Estimated Population Share

Source: American Community Survey

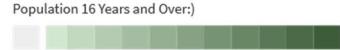
5-Year Estimates


Construction, Extraction, and Maintenance

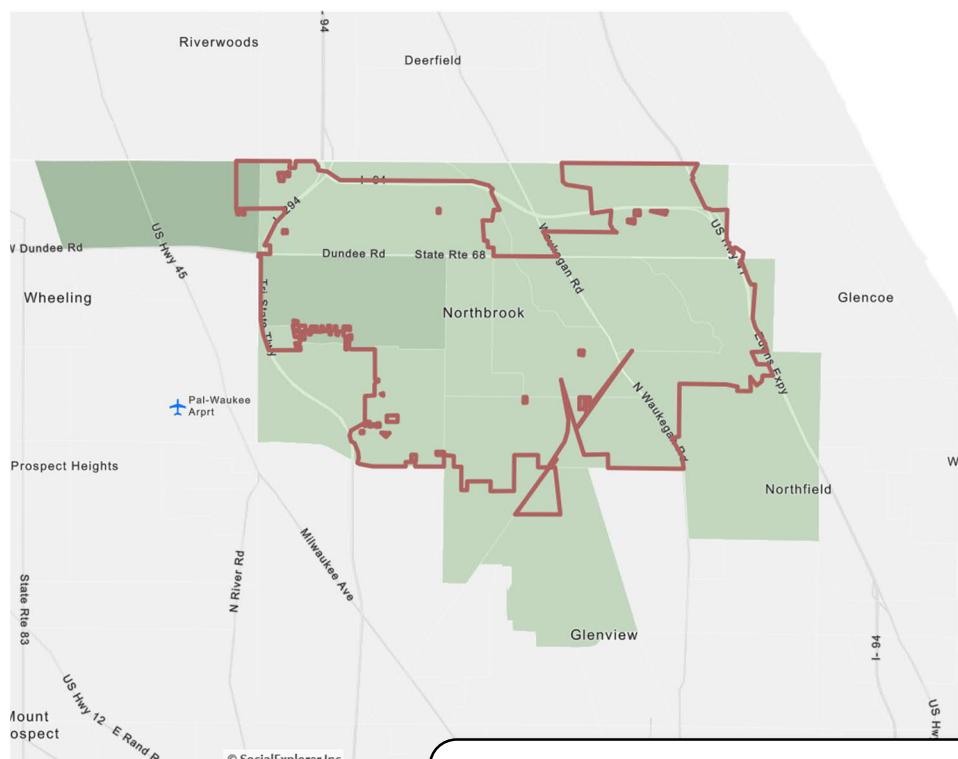
Occupations (percent of: Employed Civilian Population 16 Years and Over):

% Employed Civilian Population 16 Years and Over:

Farming, Fishing, and Forestry Occupations (percent of: Employed Civilian Population 16 Years and Over):


% Employed Civilian Population 16 Years and Over:

Construction, Extraction, and Maintenance Occupations (percent of: Employed Civilian Population 16 Years and Over):


% Employed Civilian Population 16 Years and Over:

Production Occupations (percent of: Employed Civilian Population 16 Years and Over):

% Employed Civilian Population 16 Years and Over:

Transportation and Material Moving Occupations (percent of: Employed Civilian Population 16 Years and Over):

Observations for Northbrook

The estimated total Northbrook residents employed in at-risk occupations is 2,237, nearly 10% of all Northbrook residents who are employed, and over 4% of the Village's total population. At-risk workers make up at least 1 in every 13 climate vulnerable individuals in the Village. At-risk workers are most concentrated in the Northwestern sections of the Village. The largest at-risk worker categories are employed in Transportation, Material Mover, Construction, Extraction, and Production jobs.

At Risk Workers Summary

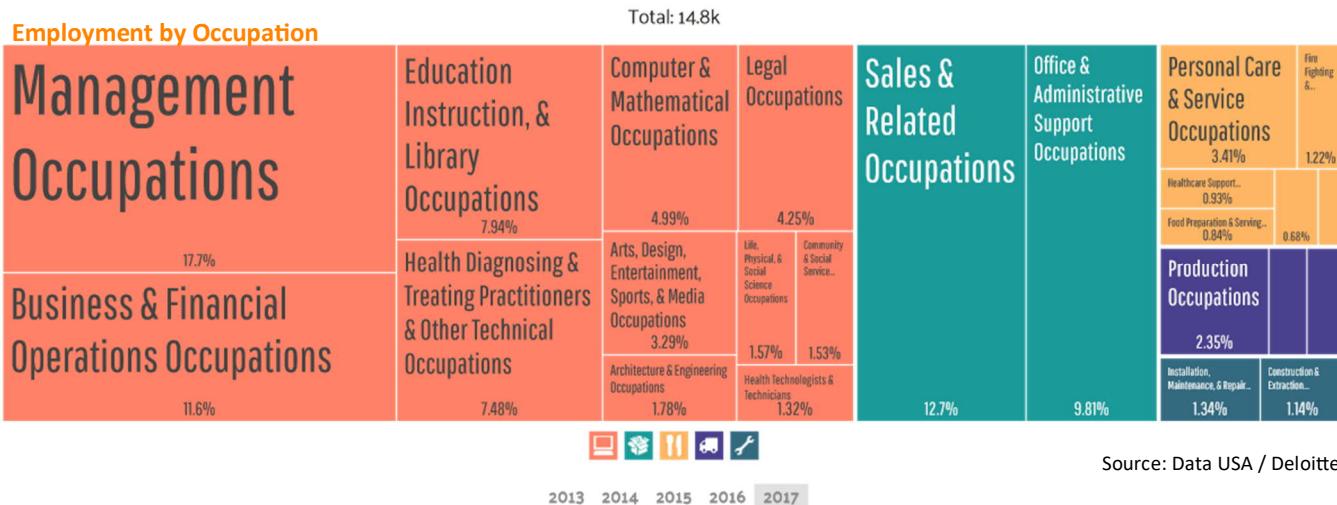
Total Estimated Population:

2,237

Estimated Share of Total Vulnerable Population:

5-8%

Estimated Share of Total Village Population:


4.1%

Vulnerable Populations—At Risk Workers (Continued)

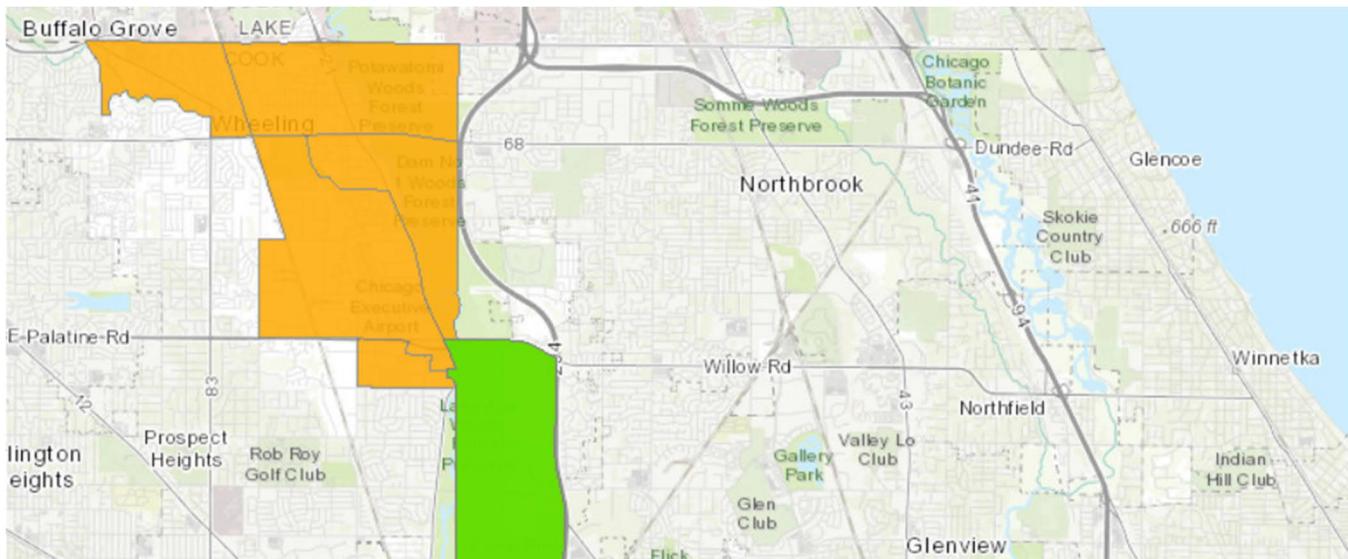
Employment by Occupation

From 2016 to 2017, employment in Northbrook, IL grew at a rate of 0.605%, from 14.7k employees to 14.8k employees. The most common job groups, by number of people living in Northbrook, IL, are Management Occupations (2,624 people), Sales & Related Occupations (1,881 people), and Business & Financial Operations Occupations (1,717 people). This chart illustrates the share breakdown of the primary jobs held by residents of Northbrook, IL.

Employment by Industries

From 2016 to 2017, employment in Northbrook, IL grew at a rate of 0.605%, from 14.7k employees to 14.8k employees. The most common employment sectors for those who live in Northbrook, IL, are Professional, Scientific, & Technical Services (2,202 people), Health Care & Social Assistance (2,086 people), and Finance & Insurance (1,893 people). This chart shows the share breakdown of the primary industries for residents of Northbrook, IL, though some of these residents may live in Northbrook, IL and work somewhere else. Census data is tagged to a residential address, not a work address.

Vulnerable Populations—Individuals with Possible Food Insecurity


Climate change affects agriculture in a number of ways, including through changes in average temperatures, rainfall, and extreme weather events and heat; changes in pests and diseases; changes in atmospheric carbon dioxide and ground-level ozone concentrations. These effects can be anticipated regionally as well as worldwide to become more pronounced by mid-century.

As the food distribution system becomes more stressed, individuals with less readily available access are more likely to be negatively impacted by the resulting cycles of food shortages and food price increases.

Individuals experiencing food insecurity may be particularly sensitive to the following Climate Risks:

Map of Vulnerable Population Distribution Within Community

Food Access

On the map above, highlighted sections represent low-income census tracts (tracts where 20% or more of the population is at or below poverty, or where family median incomes are 80% or less of State median) where a significant number (at least 500 people) or share (at least 33 percent) of residents are distant from the nearest supermarket. In sections which are green, residents are more than 1 mile (urban) or 10 miles (rural), while in orange sections residents are more than $\frac{1}{2}$ mile (urban) or 10 miles (rural) from nearest supermarket.

None of the census tracts within Northbrook are identified as regions with significant populations with food access concerns. It should be noted, however, that portions of the population may have food insecurity which could be identified through a community wide food security assessment.

In Illinois, 1,283,550 people are struggling with hunger - and of them 363,900 are children.

1 in 10 people

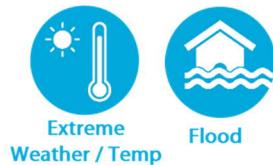
struggles with hunger.

1 in 8
children
struggles with hunger.

People facing hunger in
Illinois
are estimated to report needing

\$630,473,000

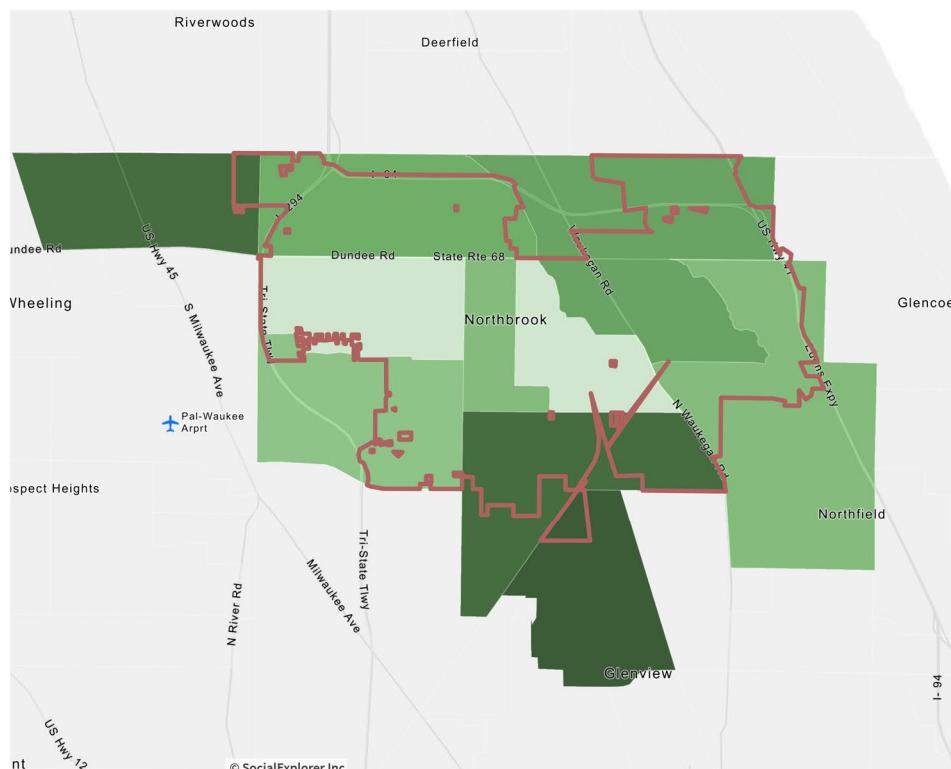
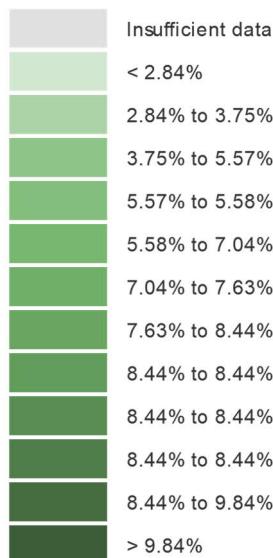
more per year to meet their food needs.


The average cost of a meal in Illinois is \$2.90. Data from Feeding America's [Map the Meal Gap 2020](#) study. [Learn more](#) ›

Vulnerable Populations—Vehicle Access

Limited mobility due to lack of vehicle access may present challenges during emergency evacuation situations, especially for individuals in high-risk areas. In addition, limited mobility can inhibit access to cooling stations (public facilities with air conditioning) during extreme heat events and/or access to hospitals or clinics. In addition, individuals with limited vehicle access may also be individuals in economic stress or older adults—both vulnerable populations for which mobility challenges may exacerbate climate vulnerabilities.

Individuals with limited or no vehicle access may be particularly sensitive to the following Climate Risks:

Map of Vulnerable Population Distribution Within Community

Individuals With No Vehicle Access

Estimated Population Share

Source: American Community Survey
5-Year Estimates

Observations for Northbrook

The estimated total population of individuals with no vehicle access for Northbrook is 3,607. This vulnerable population makes up 6.8% of the Village's total population. Individuals with no vehicle access are most concentrated in the Northwest and South Central sections of the Village. These sections represent both the highest estimated population as well as the highest share of the total population of these tracts - ranging from 8.4% to over 13% of the total population of those neighborhoods.

No Vehicle Access Summary

Total Estimated Population:	3,607
Estimated Share of Total Vulnerable Population:	5-10%
Estimated Share of Total Village Population:	6.8%

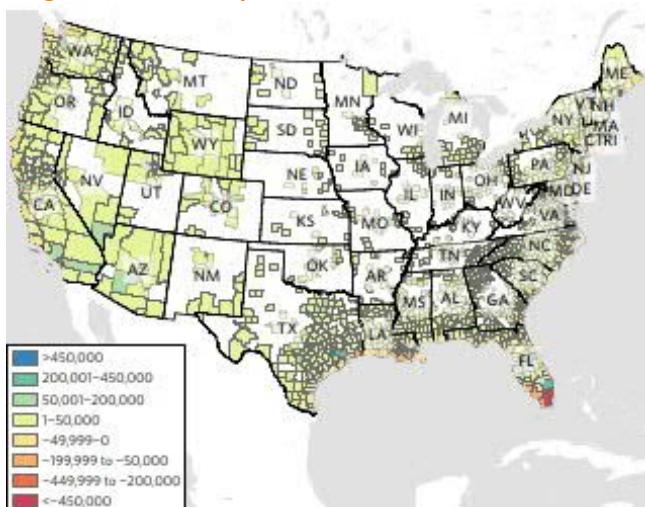
Vulnerable Populations—Climate Migrant Populations

In the United States alone, within just a few decades, hundreds of thousands of homes on US coasts will be chronically flooded. According to a study by the Union of Concerned Scientists, over 170 communities in the United States will be chronically inundated from sea level rise by the end of this decade. More than half of these 170 communities are currently home to socioeconomically vulnerable neighborhoods.

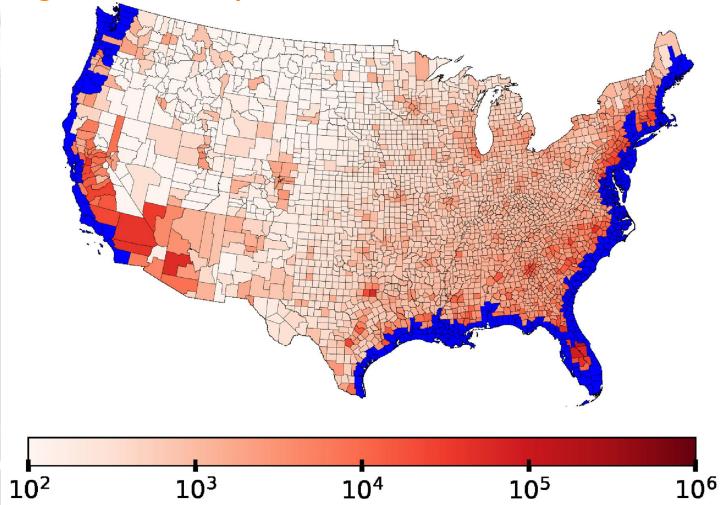
By 2060 the number may more than double to 360 communities and by 2100 double yet again to over 670 communities chronically inundated. By that time more than 50 heavily populated areas—including Oakland, California; Miami and St. Petersburg, Florida; and four of the five boroughs of New York City—will face chronic inundation. These effects of sea level rise could displace 13,000,000 people within the United States by the end of this century. In addition to these internal-US climate migrants, the UN forecasts estimate that there could be anywhere between 25 million and 1 billion environmental migrants by 2050.

Human migration is a natural response to these climate change pressures, and is one of many adaptation measures that people will take in response to climate change. Understanding how human migration will be affected by climate change is therefore a critical input in the decision making process of many governments and organizations. In particular, it is important to understand how climate change driven migration will differ from “business as usual” forms and motivations humans have to migrate, increasing the volume rate of migration bringing with it indirect impacts on the communities likely to receive migrants.

The impacts of climate migration will cause accelerated changes for inland areas, particularly urban areas, that will observe much higher levels of incoming migrants than they would have without climate impacts. It is projected that 86% of all communities with populations of over 10,000 will be impacted with climate migration this century. These changes can in turn take the form of tighter labor markets and increased housing prices, and impacts on income inequality. This climate migration can also have positive impacts such as improved productivity, broadened skillsets within the labor force, and expanded human capital.


Projected Potential Climate Migrant Population by 2100

Cook County: **50,000-100,000**


Village of Northbrook
(Pro Rata Share): **400-800**

Below are two modeled projections for US climate migration induced by sea level rise (SLR) only through 2100:

Hauer Projection
Migration induced by sea-level rise in US

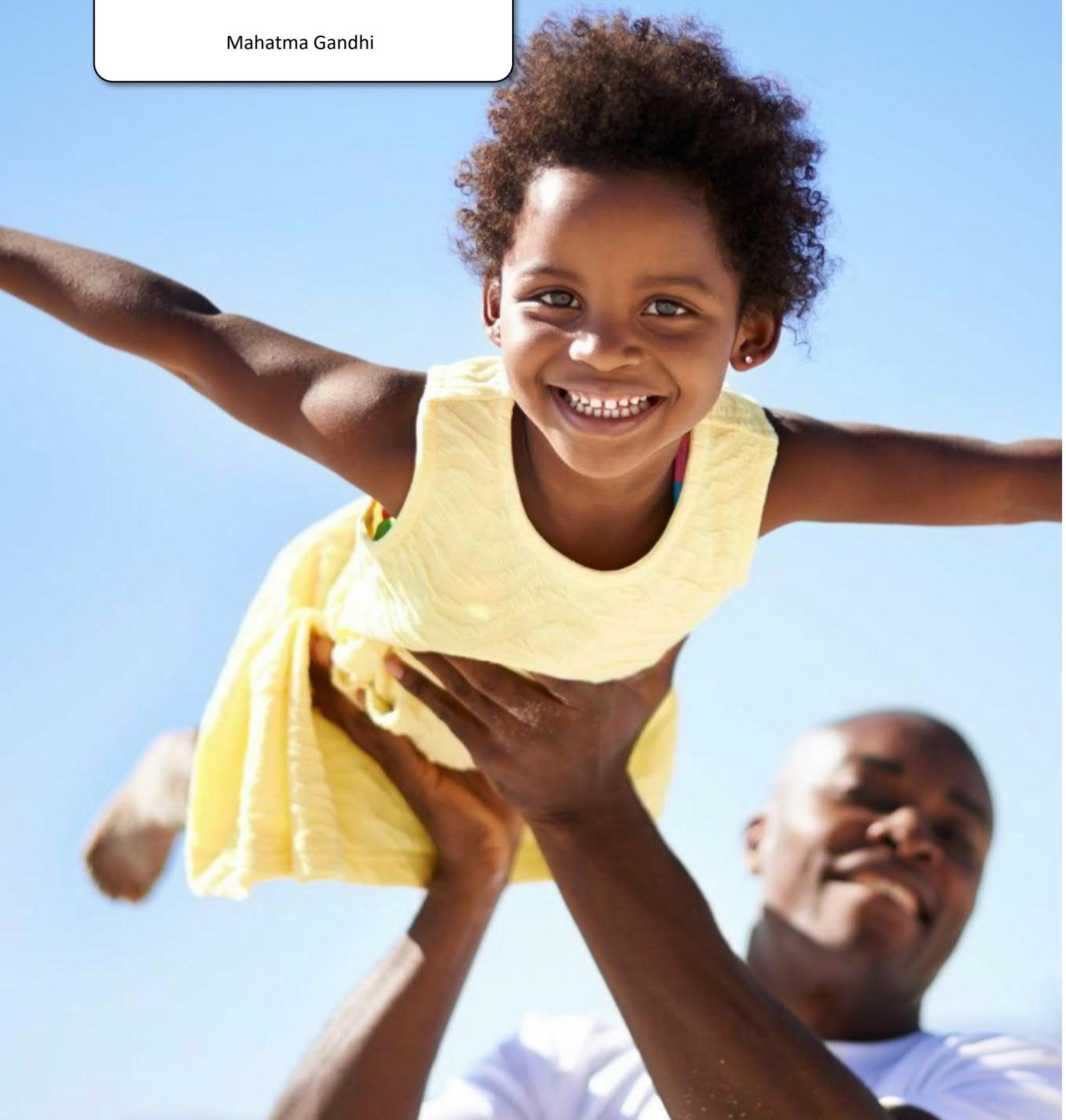
Robinson Projection
Migration induced by sea-level rise in US

(Sources: School of Computational Science and Engineering, Georgia Institute of Technology, United Nations International Organization on Migration Hauer, M. Migration induced by sea-level rise could reshape the US population landscape. *Nature Clim Change* 7, 321–325 (2017). <https://doi.org/10.1038/nclimate3271>

Robinson C, Dilkina B, Moreno-Cruz J (2020) Modeling migration patterns in the USA under sea level rise. *PLoS ONE* 15(1): e0227436. <https://doi.org/10.1371/journal.pone.0227436>

S e c t i o n

10


Findings

“

**The measure of a country's greatness
should be based on how well it cares for
its most vulnerable populations.**

Mahatma Gandhi

Findings

Summary of Vulnerabilities

The chart below summarizes the vulnerable population demographics by category for each census tract in the Village. The tracts with the highest two quartiles of each demographic are highlighted in blue. The “Total Instances of Vulnerabilities” line shows the total instances of vulnerabilities for each census tract, with the tracts in the highest two quartiles highlighted in blue. It should be noted that it is possible for individuals to be members of more than one vulnerable population. For example, an individual may be both an adult over age 65 as well as an individual living below 200% of poverty level. Consequently, the “total instances of vulnerabilities does not necessarily represent the numbers of vulnerable individuals in each tract.”

The “Vulnerability Coefficient” represents the total total instances of vulnerabilities divided by the total population of the census tract (“Total Population in Tract”) and is a representation of the proportion of total climate vulnerabilities within the population of the census tract. This number could be thought of as “Density of Vulnerability” meaning a high coefficient represents a high density of instances of vulnerability compared to the total census tract population. Neighborhoods with high vulnerability coefficients may represent portions of the community with higher overall need and may possibly be viewed as neighborhoods the Village may prioritize for an action if addressing the portions of the community with the greatest need was desired. The tracts with Vulnerability Coefficients in the highest two quartiles are highlighted in light red.

The “Share of Total Vuln” represents the census tract’s share of the community-wide instances of vulnerability. This number represents the raw total instances of vulnerabilities without consideration to the size of the overall population of the Census Tract. It should be noted, that a census tract with a lower Vulnerability Coefficient may still have a large share of the total instances of vulnerability—particularly in census tracts with relatively high total populations. Census tracts with high Share of Total Vulnerability can be viewed as neighborhoods the Village may prioritize for an action if addressing the most instances of vulnerability was desired. The tracts with shares of total vulnerability in the highest two quartiles are highlighted in light red.

Lastly, the chart includes a Composite Rank Score which represents an average of the Vulnerability Coefficient and the Share of Total Vulnerability for each census tract. This measure can be viewed as identifying neighborhoods the Village may prioritize for an action if a balanced approach of addressing both high potential neighborhood need and addressing the most instances of vulnerability was desired. The tracts with Composite Rank scores in the highest two quartiles are highlighted in dark red.

Summary of Vulnerable Populations by Census Tract

Tract	Census Tract 8015, Cook County, Illinois	Census Tract 8016.01, Cook County, Illinois	Census Tract 8016.05, Cook County, Illinois	Census Tract 8016.06, Cook County, Illinois	Census Tract 8016.08, Cook County, Illinois	Census Tract 8017.01, Cook County, Illinois	Census Tract 8017.02, Cook County, Illinois	Census Tract 8018, Cook County, Illinois	Census Tract 8023, Cook County, Illinois	Census Tract 8024.02, Cook County, Illinois
	Est	% of tract total								
children	344	5.5%	209	4.6%	215	3.8%	287	4.9%	342	4.9%
seniors	1,989	31.9%	1,246	27.5%	1,682	30.0%	1,615	27.3%	2,472	35.7%
disabled	674	10.8%	390	8.6%	576	10.3%	514	8.7%	925	13.4%
Est Total Low Income	587	9.4%	583	12.9%	361	6.4%	473	8.0%	451	6.5%
POC	793	12.7%	732	16.2%	1,015	18.1%	936	15.8%	1,846	26.7%
Limited English	202	3.2%	189	4.2%	329	5.9%	184	3.1%	436	6.3%
Composit At-Risk Workers	144	2.3%	153	3.4%	187	3.3%	204	3.5%	262	3.8%
No Vehicle Access	474	7.6%	317	7.0%	39	0.7%	224	3.8%	678	9.8%
Total Instances of Vulnerability	5,208	83.4%	3,819	84.4%	4,404	78.6%	4,437	75.1%	7,411	107.2%
Total Population in Tract	6,242		4,527		5,600		5,907		6,915	
Vulnerability Coefficient	0.83		0.84		0.79		0.75		1.07	
Rank	5		4		6		7		2	
share of total vuln	10.9%		8.0%		9.2%		9.3%		15.5%	
rank	3		8		6		5		2	
Composit rank score	8		12		12		4		19	
Blended Rank	4		5		6		7		9	

Data Source: US Census

Findings

Vulnerable Populations Risk Sensitivity Chart

Population	Primary Risks to The Population								Enhanced Vulnerabilities				
	Extreme Weather / Temp	Flood	Air Quality	Vector-Borne	Food Insecurity	Water Quality	Waterborne	Power Failure	Crop Yield	Mortality	Energy Costs	Property Crime	Violent Crime
children	2,869	2,869	2,869	2,869	2,869		2,869	2,869	2,869	2,869	2,869	2,869	2,869
seniors	14,442	14,442	14,442	14,442	14,442		14,442	14,442	14,442	14,442	14,442	14,442	14,442
disabled	5,363	5,363	5,363	5,363		5,363		5,363	5,363	5,363	5,363	5,363	5,363
Est Total Low Income	6,163	6,163	6,163	6,163	6,163	6,163	6,163	6,163	6,163	6,163	6,163	6,163	6,163
POC	10,021	10,021	10,021	10,021	10,021	10,021	10,021	10,021	10,021	10,021	10,021	10,021	10,021
Limited English	3,084	3,084	3,084	3,084	3,084		3,084	3,084	3,084	3,084	3,084	3,084	3,084
Composit At-Risk Workers	2,237	2,237	2,237	2,237		2,237		2,237	2,237				2,237
No Vehicle Access	3,607	3,607	3,607		3,607			3,607	3,607				3,607
Total by category	47,786	44,917	47,786	38,816	45,549	16,184	24,374	45,549	30,165	22,674	41,942	39,073	21,505
percentage of Vuln pop	100.0%	94.0%	100.0%	81.2%	95.3%	33.9%	51.0%	95.3%	63.1%	47.4%	87.8%	81.8%	45.0%
Rank by Vuln	1	2	1	3	2	6	4	2	4	5	2	3	5
Percentage of Tot Pop	87.9%	82.6%	87.9%	71.4%	83.8%	29.8%	44.8%	83.8%	55.5%	41.7%	77.1%	71.9%	39.6%

Based on the total estimated population count for each vulnerable population and considering the risks each demographic is most sensitive to, the population vulnerabilities can be considered from highest sensitivity (more vulnerable individuals) to lowest (fewer vulnerable individuals) sensitivity. It should be noted that risks which appear to have lower sensitivity levels should not be considered irrelevant for the community.

The Vulnerable Population Risk Sensitivity Chart to the right tabulates the instances of vulnerable population which are particularly sensitive to each of the Climate Risks to the Population as outlined in Section 6 and mapped/calculated in Section 9. The left side of the chart includes all of the primary climate risks while the right side includes the economic climate risks.

Prioritizing Risk and Vulnerable

Climate change impacts will affect everyone and Village policies and actions should consider climate adaptive needs of the entire community. As with all planning efforts climate adaptation benefits from analysis in order to assist in establishing priorities for initial efforts. An effort to structure a prioritization should not be seen as an attempt to discard the need to address climate impacts for any population within the Village - whether or not it is defined as one of the "vulnerable" populations. Prioritization, however, is necessary to ensure the greatest impact and effectiveness of limited Village resources.

Based on the above review the Village's adaptive efforts may be most effective by prioritizing strategies which address the climate risks of Air Quality, Extreme Heat, Flooding, Power/Infrastructure Failure, Energy Costs, and Food Insecurity. Particular attention should be paid to strategies which are most effective for Seniors over 65, People of Color, and those in Economic Stress.

Northbrook Climate Risk Sensitivity Ranking Summary

Findings

Projected Economic Impacts of Climate Change

“Estimating economic damage from climate change in the United States”, a 2017 study completed by Solomon Hsiang and others from the University of California at Berkeley assessed the economic impact of current climate projections throughout the United States. The sectors assessed, and the findings for Cook County Illinois and the Village of Northbrook are below:

Agricultural Yields Through 2100 (Graphic A)

Agricultural yields are projected to decline with the increase of Global Mean Surface Temperature in addition to impacts related to precipitation changes. Although increased CO₂ levels are anticipated to offset a portion of these yield losses, the impact for much of the United States will be a net negative. Local projections:

Cook County and Village of Northbrook: **-27.8%**

Energy Expenditures Through 2100 (Graphic C)

As average annual temperatures increase, demand for energy will increase, resulting in increased energy expenditures. Local projections:

Cook County and Village of Northbrook: **+10.5%**

Reduced Labor Productivity Through 2100 (Graphics D & E)

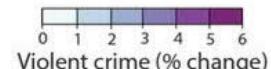
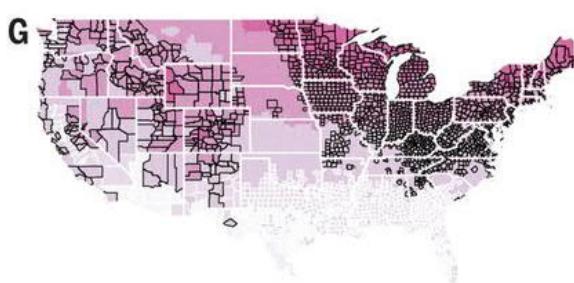
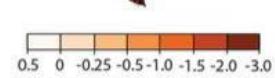
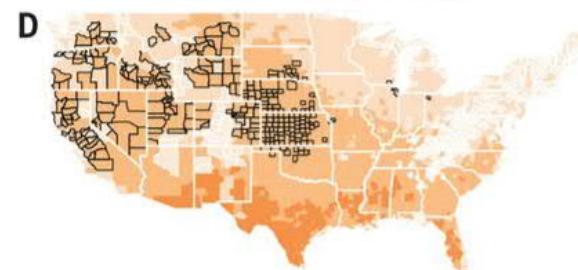
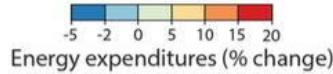
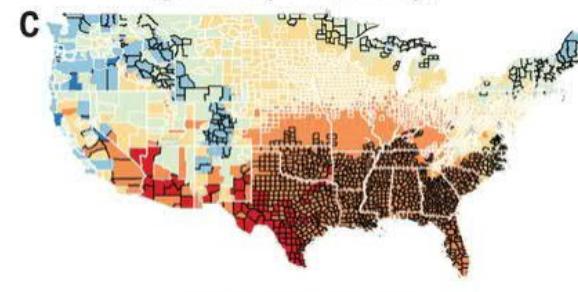
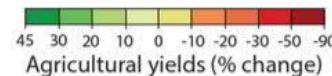
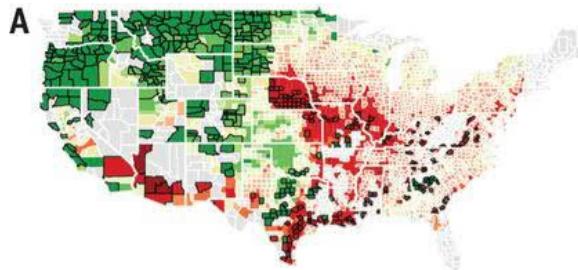
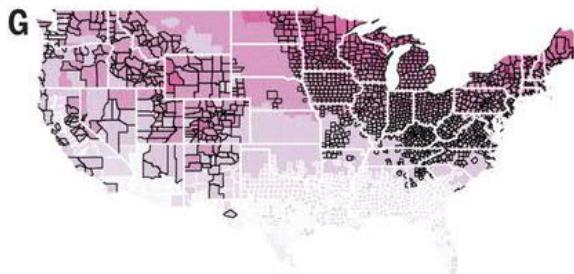
Labor productivity declines with the instance of increased temperature. Rates vary for “low-risk” workers who are predominantly not exposed to exterior conditions and for “high-risk” workers (those identified as “At Risk Workers” in Section 9). Local projections:

Low-Risk Labor Loss for

Cook County and Village of Northbrook: **-0.21%**

High-Risk Labor Loss for

Cook County and Village of Northbrook: **-1.25%**










Increases in Crime Rates Through 2100 (Graphics G & H)

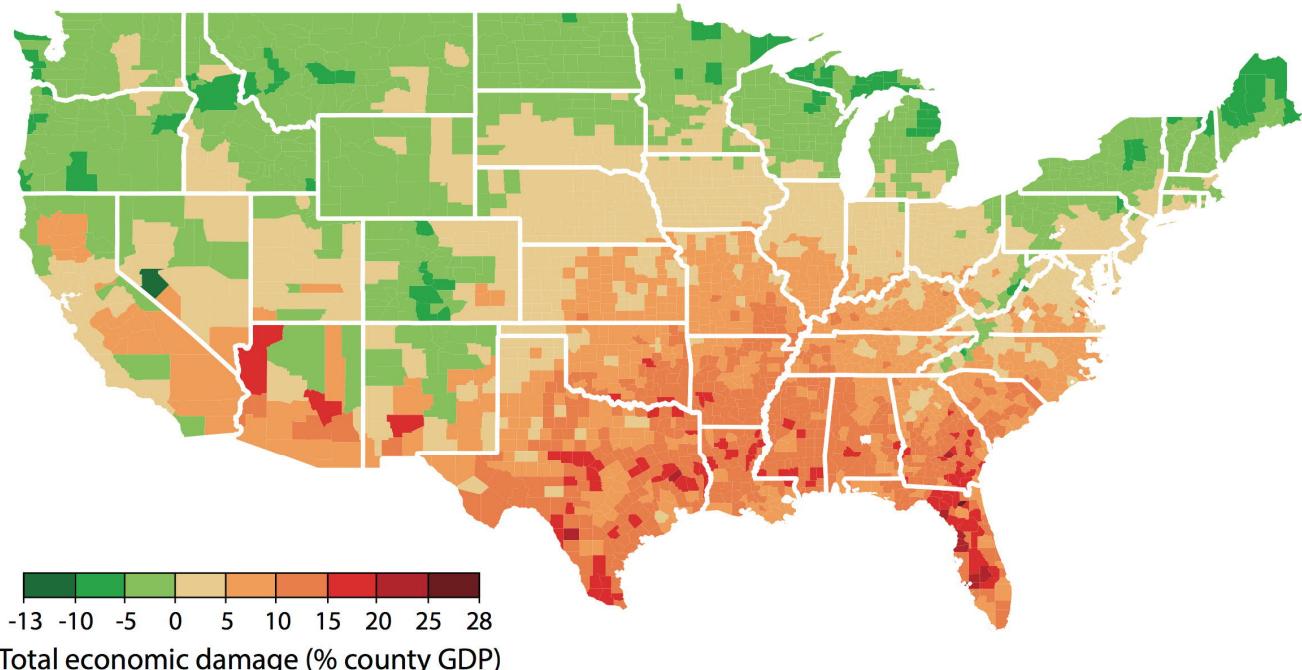
Studies indicate property crime increases as the number of cold days decrease due to the property crime suppression effect cold days have. Violent crime rates have been shown to increase linearly at a relatively precise 0.88% per 1°C. Local projections:

Property Crime Increase: **+1.5%**

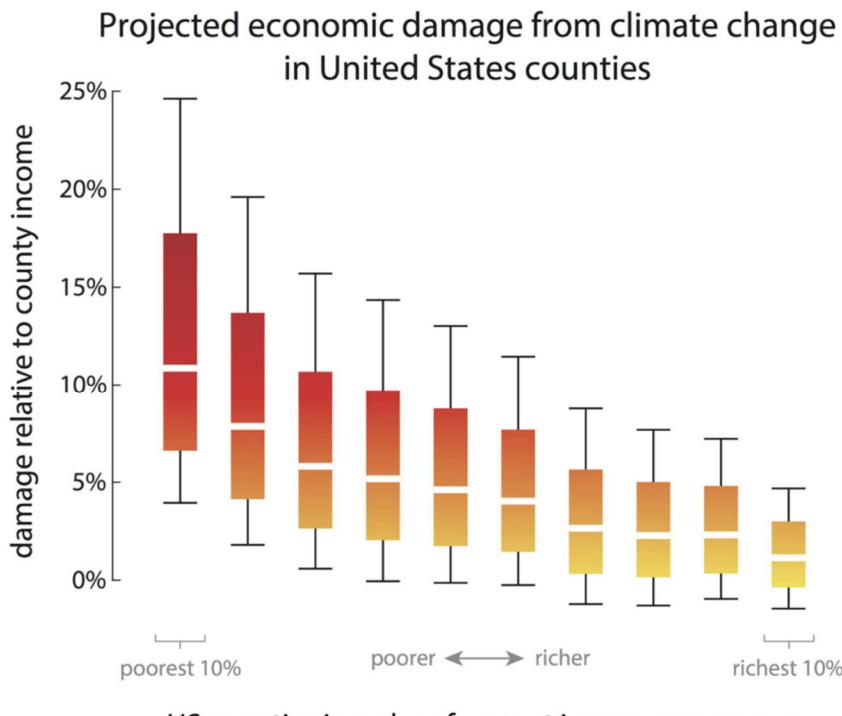
Violent Crime Increase: **+3.72%**

Graphic
Source:
“Estimating
economic
damage from
climate
change in the
United States”

Findings


Total Projected Economic Impacts Through 2100

According to research completed for "Estimating economic damage from climate change in the United States", a 2017 study completed by Solomon Hsiang and others from the University of California at Berkeley the total annual economic impact for Cook County Illinois by 2100 will be:


\$7,998,369,473 annually (2018 dollars)

Estimating the total annual economic impact for the Village of Northbrook on a Pro Rata share results in:

\$51,189,564 annually (2018 dollars)

Hsiang, Kopp, Jina, Rising, et al. (2017)

Hsiang, Kopp, Jina, Rising, et al. (2017)

Inequity of Economic Impacts Through 2100

According to the study "Estimating economic damage from climate change in the United States", climate change economic impacts will increase the unpredictability and inequity of future economic outcomes. The projected economic effects are unequally borne. As the graphic to the left illustrates, the poorest 10% are likely to receive 5 to 10 times the negative economic impacts of the wealthiest 10% in the community.

Graphic Source: "Estimating economic damage from climate change in the United States" Muir-Wood, Paul Wilson, Michael Oppenheimer, Kate Larsen and Trevor Houser Solomon Hsiang, Robert Kopp, Amir Jina, James Rising, Michael Delgado, Shashank Mohan, D. J. Rasmussen, Robert

DOI: 10.1126/science.aal4369

Science 356 (6345), 1362-1369.

Findings

Estimating Social Cost of Carbon

“Social Cost of Carbon” is an effort to properly account for the damages caused by greenhouse gas emissions and the resulting climate change impacts. By including the social cost of carbon in planning efforts, agencies and businesses can properly evaluate policies and decisions that affect greenhouse gas emissions. The “Social Cost of Carbon” is a measure of the share of climate change economic harm and impacts from emitting one ton of carbon dioxide into the atmosphere.

The “Total Projected Economic Impacts” calculated on the previous page can be used to establish a reasonable localized social cost of carbon for the community. The methodology is to simply take the projected annual climate impact value and divide by the current community-wide GHG emissions:

$$\text{Estimating the total annual economic impact for the Village of Northbrook} \div \text{Current Total Villagewide GHG Emissions} = \text{Localized Social Cost of Carbon}$$

Findings

Review of Climate Hazards for The Community

A “Climate Hazard” is a physical process or event (hydro-meteorological or oceanographic variables or phenomena) that can harm human health, livelihoods, or natural resources. Climate Hazards are reviewed based on current hazard level, anticipated change over time, and projected future hazard level.

The chart below reviews the current, future, and timeline of change for each of the primary Climate Hazards for the Village. In addition, the columns on the right illustrate the reported number of events, % change, and annualized economic impact of each of these hazards over the last 20 years. Note, the number of events and annualized property losses are based solely on the number of events reported by NOAA, the actual number is likely to vary.

Climate Hazard Type	Current hazard risk level	Expected change in intensity	Expected change in frequency	Timeframe	Number of Reported Events 1999-2009 vs 2009-2019 (NOAA)	% Change	Countywide Annualized Property Loss Value (NOAA)
Extreme Heat	Moderate	Increase	Increase	Medium-term	2 events to 8 events	400%	\$39K
Extreme Cold	Moderate	Decrease	Decrease	Medium-term	12 events to 3 events	-75%	\$0K
Extreme Precipitation	Not Known	Increase	Increase	Short-term	11 events to 0 events	-100%	\$0K
Floods	High	Increase	Increase	Short-term	80 events to 128 events	160%	\$24,000K
Droughts	Moderate	Increase	Increase	Medium-term	9 events to 0 events	-100%	\$0K
Storms	High	Increase	Increase	Short-term	308 events to 385 events	125%	\$1,480K
Forest/Wild Fires	Low	Not known	Not known	Not known	1 events to 0 events	-100%	\$100K
Air Quality Impacts	Moderate	Increase	Increase	Long-term	N/A	N/A	N/A

Findings

Review of Climate Risks for the City of Bloomington

A “Climate Risk” is the potential for negative consequences and outcomes for human health, systems, or communities. The most common way of evaluating the level of risk associated is “likelihood of Occurrence” x “Impact Level” or vulnerability. Two charts are provided below. The first reviews the expected impacts, likelihood of occurrence, impact level based on Population vulnerability reviewed in Section 9 and earlier in Section 10, potential timeframe, and resulting overall risk level for Climate Risks to Population (Health Impacts). The second reviews the infrastructural and institutional Climate Risks to the Community. Each chart includes a brief review of the expected impacts and indicators.

Health Risks to Population

Health Impacts	Expected Impact(s)	Likelihood of Occurrence	Impact Level (Population Vulnerability)	Timeframe	Risk (Likelihood x Impact)	Impact-related indicators
<u>Extreme Heat</u>	Increased demand for cooling; heat stress and emergency visits, heat related health	Likely	High	Medium-term	High	Cooling Degree Days, days above 95
<u>Flooding</u>	damage to property, flood related health impacts; infrastructure impacts	Likely	High	Short-term	Very High	Flood events, flash flood occurrences, wettest 5-day periods, number of heavy rain events, disaster declarations, change in NOAA storm
<u>Drought</u>	Damage to crop/tree/ecosystem, reduced drinking water source, increased flash flood potential due to decreased soil permeability	Possible	Moderate	Medium-term	Moderate	Consecutive days without rain, aquifer level, surface water condition, river flow
<u>Air Quality Impacts</u>	Increased particulate matter, increased ozone impacts, increased instances of asthma	Likely	High	Medium-term	High	Air quality index
<u>Vector-Borne Diseases</u>	Increased instances of lyme disease, encephalitis, heart worm, <i>malaria</i> , <i>zika virus</i> .	Likely	Moderate	Long-term	Moderate	Disease records
<u>Nutrition Insecurity</u>	Food price volatility/change, fluctuation in availability	Possible	High	Medium-term	High	Food price index, Foodshelf demand, % of school children qualifying for free and reduced lunch
<u>Water Quantity/Quality Impacts</u>	Water shortage, surface water quality impacts due to heat and stormwater runoff	Possible	Low	Long-term	Low	Aquifer health; Water quality test results
<u>Water Borne Disease</u>	Bacteria exposure at infected surface water locations, contamination of drinking water due to flood	Unlikely	Moderate	Medium-term	Low	flood events; algea blooms

Climate Risks to Infrastructure and Institutions

Impacted Policy Sector	Expected Impact(s)	Likelihood of Occurrence	Potential Impact Level	Timeframe	Risk (Likelihood x Impact)	Impact-related Indicators
<u>Buildings</u>	Increased demand for cooling, need for weatherization	Likely	Moderate	Short-term	High	Low income housing units, % of residents with housing burden, housing stock age, % of units without weatherization improvements
<u>Transport / Roads</u>	Increased freeze/thaw damage, increased salt/sand use and maintenance budgets	Likely	Moderate	Short-term	High	% of flooded or flood damaged roads and bridges, City road maintenance budget
<u>Energy</u>	Increased power outages, increased demand and cost expenditure	Likely	High	Medium-term	High	Energy outage occurrences, number of customers without power, cooling degree day increases
<u>Water</u>	increased scarcity, water quality impacts	Possible	High	Long-term	Moderate	Water infrastructure damage, aquifer health, flood contamination
<u>Waste</u>	Damage to waste infrastructure and processing, particularly wastewater	Unlikely	Moderate	Long-term	Low	Flood impacts at wastewater facilities, sewage release, flooding at landfill/RDF sites
<u>Land Use Planning</u>	Stormwater management impacts, heat island impacts, flood management,	Likely	High	Short-term	Very High	Heat Island co-efficient; stormwater runoff projections, citywide tree canopy coverage, citywide impervious surface coverage, % of complete street
<u>Agriculture & Forestry</u>	Reduction in crop yield, forest + tree species loss due to changes in hardiness zone and pests	Likely	Moderate	Medium-term	High	% change in crop yield, impacts to crop planting and harvesting; tree canopy loss to pests, tree canopy loss to hardiness zone changes
<u>Environment & Biodiversity</u>	Insect infestation, increased disease vectors, ecosystem degradation	Likely	Moderate	Long-term	Low	% of habitat loss, invasive species
<u>Law Enforcement and Emergency Response</u>	Increased property and violent crime, increased emergency response demand and mortality rate	Likely	High	Long-term	Moderate	Property and violent crime statistics (particularly during extreme heat, instances of mental health need, calls for emergency response (particularly during extreme heat and weather)
<u>Tourism</u>	Decline in tourism demand	Not known	Not Known	Not known	Not Known	Tourism statistics, hotel occupancy levels
<u>Economic Impact</u>	Impacts on regional Ag business, energy expenditures, labor impacts	Likely	High	Medium-term	Moderate	Disaster declarations, economic indicators, employment rates

Priority Climate Risks for Northbrook

The priority climate risks to the population of Northbrook include Flooding, Extreme Heat, Air Quality, and Nutrition Insecurity Impacts while the priority climate risks to infrastructure/institutions include Land Use Planning, Buildings, Roads, Energy, and Agriculture and Forestry impacts

Village Green

S e c t i o n

11

Recommendations

Recommendations

Recommended Adaptation and Resilience Goals

The following are recommended overall goals for increasing the climate resilience for the Village of Northbrook. These goals are based on the anticipated climate impacts for the community as well as the vulnerable populations present. Some of the goals and strategies identified in this report will require new municipal policies or program development. Many others have some existing municipal, County, and State policies already underway which relate to them. A detailed review of all existing policies against the goals and the strategies recommended in this report should be conducted and policy modifications integrated.

In prioritizing the implementation of the goals and strategies which follow, the Village of Northbrook should:

- Consider available resources and opportunities to leverage new resources.
- When budget, staff, or schedule restrictions limit strategy implementation capacity, apply strategies with a priority towards vulnerable populations and tracts/areas with higher vulnerable populations (see Section 10, page 10-3 for further information)
- Consider the associated carbon emission reduction opportunities and other co-benefits of strategies.
- Study the anticipated equity impacts of strategies.
- Consider the urgency and window of opportunity.
- Conduct appropriate outreach and engagement efforts with community residents and businesses for community feedback and buy-in.
- Identify departments / staff capable of taking the lead for strategy implementation. Integrate implementation plans into a routine working plan that is reviewed and revised regularly (every 2 to 5 years recommended).
- Whenever possible select strategies that provide everyday benefits in addition to climate risk reduction. These forms of strategies are known as “no regrets strategies” and they can be justified from economic, social, and environmental perspectives whether natural hazard events or climate change hazards take place or not.
- Explore possible use and effectiveness of existing municipal owned facilities and properties to meet emergency shelter and cooling center functions.

Recommendations

Climate Adaptation and Resilience Goals

The following are potential Climate Adaptation Goals for the Village of Northbrook provided for consideration. The goals are organized based on the primary anticipated climate change impacts they address.

Goals To Build Capacity For Individuals/Institutions/Businesses Preparing For And Responding To Population Risks Of Climate Change Impacts

Priority

- Goal C1 - Incorporate climate change preparedness activities into existing local government plans and programs as a means to increase resilience while minimizing costs.
- Goal C2 - Improve effectiveness of on-going adaptation measures.
- Goal C3 - Strengthen emergency management capacity to respond to weather-related emergencies.
- Goal C4 - Improve the capacity of the community, especially populations most vulnerable to climate change risks, to understand, prepare for and respond to climate impacts.
- Goal C5 - Enhance resilience of critical Village operations.
- Goal C6 - Enhance Village's capacity for adaptation implementation.
- Goal C7 - Secure funding to support Village's adaptation efforts.

Goals Responding to Heat Stress And Extreme Weather

Priority

- Goal H1 - Strengthen emergency management capacity to respond to heat stress and extreme weather.
- Goal H2 - Minimize health issues caused by extreme heat days, especially for populations most vulnerable to heat.
- Goal H3 - Improve the capacity of the community, especially populations most vulnerable to climate change risks, to understand, prepare for and respond to high heat and extreme weather.
- Goal H4 - Decrease the urban heat island effect, especially in areas with populations most vulnerable to heat.
- Goal H5 - Enhance resilience of community tree canopy and park/forest land
- Goal H6 - Enhance the resilience of buildings within the community to extreme heat, weather, and energy and fuel disruptions.
- Goal H7 - Improve the energy efficiency and weatherization of homes and businesses to reduce energy costs and carbon pollution.
- Goal H8 - Expand access to distributed solar energy in low-income communities in order to lower energy bills, increase access to air conditioning, and decrease carbon pollution levels.
- Goal H9 - Enhance resilience of local businesses to extreme weather.
- Goal H10 - Strengthen social cohesion and networks to increase support during extreme weather events.
- Goal H11 - Increase the resilience of natural and built systems to adapt to increased timeframes between precipitation and increased drought conditions.
- Goal H12 - Enhance the reliability of the grid during high heat events to minimize fires, brownouts and blackouts.

Recommendations

Goals Responding to Air Quality Impacts

- Goal A1 - Reduce auto-generated particulate matter, tailpipe pollutants, waste heat, and ozone formation.
- Goal A2 - Increase and maintain air quality for residents and businesses.

Goals Responding To Flood Vulnerability

- Goal F1 - Strengthen emergency management capacity to respond to flood-related emergencies.
- Goal F2 - Increase the resilience of the natural and built environment to more intense rain events and associated flooding.
- Goal F3 - Enhance resilience to fuel disruptions in transportation and mobility.

Goals Responding To Vector-Borne Disease Risks

- Goal V1 - Manage the increased risk of disease due to changes in vector populations.

Goals Responding To Food Insecurity And Food-borne Disease Risks

- Goal FI-1 - Increase food security for residents, especially those most vulnerable to food environment.
- (Rural communities) Goal A3 - Increase resilience of croplands, farms, and farmers within community.

Goals Responding To Water Quality and Quantity Risks

- Goal W1 - Increase the resilience of Village's water supply in drier summers.

Goals Responding To Waterborne Illness Risks

- Goal WB1 - Enhance protection of surface water quality damage from severe storms
- Goal WB2 - Enhance public protection from exposure to surface water pathogen contamination

Goals Enhancing Economic Resilience In Support of Climate Resilience

- Goal E1 - Leverage the economic development opportunities of the Green Economy
- Goal E2 - Enhance community resilience through economic resilience
- Goal E3 - Including Economic Resilience in Emergency Response Planning

S e c t i o n

12

Possible
Funding

Possible Funding

Many of the strategies for increasing climate resilience can be done for little to no costs. Some strategies, however, come with a cost which may be more than the Community can cover within the desired implementation timeframe. Increasingly, funding for local climate adaptation and resilience projects must draw on a range of public and private financing. For instance, groups may apply for federal grant funding, work through public/private partnerships, and/or fund projects through local taxes.

In the United States, a range of government entities and private foundations offer financial and technical resources to advance local adaptation and mitigation efforts. For your convenience, we've listed some of them here.

EPA Smart Growth Grants and Other Funding

The U.S. Environmental Protection Agency's Office of Sustainable Communities occasionally offers grants to support activities that improve the quality of development and protect human health and the environment.

<https://www.epa.gov/smartgrowth/epa-smart-growth-grants-and-other-funding>

Partnership for Sustainable Communities

The U.S. Department of Housing and Urban Development (HUD), U.S. Department of Transportation (DOT), and the U.S. Environmental Protection Agency (EPA) work together to help communities nationwide improve access to affordable housing, increase transportation options, and lower transportation costs while protecting the environment. The site's map of grants shows information on awards already made through Partnership programs.

<https://www.sustainablecommunities.gov/partnership-resources>

<https://www.sustainablecommunities.gov/content/grants-your-community>

FEMA (Federal Emergency Management Agency) Preparedness (Non-Disaster) Grants

FEMA provides state and local governments with preparedness program funding to enhance the capacity of their emergency responders to prevent, respond to, and recover from a range of hazards.

<https://www.fema.gov/preparedness-non-disaster-grants>

FEMA Hazard Mitigation Assistance

FEMA's Hazard Mitigation Assistance grant programs provide funding to protect life and property from future natural disasters. <https://www.fema.gov/hazard-mitigation-assistance>

- [Hazard Mitigation Grant Program \(HMGP\)](https://www.fema.gov/hazard-mitigation-grant-program) assists in implementing long-term hazard mitigation measures following a major disaster. <https://www.fema.gov/hazard-mitigation-grant-program>
- [Pre-Disaster Mitigation \(PDM\)](https://www.fema.gov/pre-disaster-mitigation-grant-program) provides funds for hazard mitigation planning and projects on an annual basis. <https://www.fema.gov/pre-disaster-mitigation-grant-program>
- [Flood Mitigation Assistance \(FMA\)](https://www.fema.gov/flood-mitigation-assistance-grant-program) provides funds for projects to reduce or eliminate risk of flood damage to buildings that are insured under the National Flood Insurance Program (NFIP) on an annual basis. <https://www.fema.gov/flood-mitigation-assistance-grant-program>

Drought Recovery Information

This page from the National Integrated Drought Information System describes support that may be available through federal agencies for both short- and long-term impacts of drought. Links lead to information regarding financial and technical assistance, disaster assistance programs, economic injury loans, and assistance in implementing conservation practices.

<https://www.drought.gov/drought/search/site/resources%20OR%20recovery>

Possible Funding

Clean Diesel Program

The Clean Diesel Program provides support for projects that protect human health and improve air quality by reducing harmful emissions from diesel engines. This program includes grants and rebates funded under the Diesel Emissions Reduction Act (DERA). <https://www.epa.gov/cleandiesel>

USDA Natural Resources Conservation Service

NRCS offers voluntary programs to eligible landowners and agricultural producers to provide financial and technical assistance to help manage natural resources in a sustainable manner. <https://www.nrcs.usda.gov/wps/portal/nrcs/main/national/programs/financial/>

Programs include:

- The [Agricultural Management Assistance Program](https://www.nrcs.usda.gov/wps/portal/nrcs/detail/national/programs/financial/ama/?cid=stelprdb1242818) helps agricultural producers use conservation to manage risk and address natural resource issues through natural resources conservation. <https://www.nrcs.usda.gov/wps/portal/nrcs/detail/national/programs/financial/ama/?cid=stelprdb1242818>
- [Conservation Innovation Grants](https://www.nrcs.usda.gov/wps/portal/nrcs/detail/national/programs/financial/cig/) offer funding opportunities at the state level to stimulate the development and adoption of innovative conservation approaches and technologies that leverage federal investment in environmental enhancement and protection. <https://www.nrcs.usda.gov/wps/portal/nrcs/main/national/programs/financial/cig/>
- The [Conservation Stewardship Program](https://www.nrcs.usda.gov/wps/portal/nrcs/detail/national/programs/financial/csp/?cid=stelprdb1242683) helps agricultural producers maintain and improve their existing conservation systems and adopt additional conservation activities to address priority resources concerns. Participants earn CSP payments for conservation performance—the higher the performance, the higher the payment. <https://www.nrcs.usda.gov/wps/portal/nrcs/detail/national/programs/financial/csp/?cid=stelprdb1242683>
- The [Environmental Quality Incentives Program](https://www.nrcs.usda.gov/wps/portal/nrcs/detail/national/programs/financial/eqip/?cid=stelprdb1242633) provides financial and technical assistance to agricultural producers in order to address natural resource concerns and deliver environmental benefits, such as improved water and air quality, conserved ground and surface water, reduced soil erosion and sedimentation, or improved or created wildlife habitat. <https://www.nrcs.usda.gov/wps/portal/nrcs/detail/national/programs/financial/eqip/?cid=stelprdb1242633>

[Federal Funding Compendium for Urban Heat Adaptation](#)

The Georgetown Climate Center produced an in-depth document that collected and analyzed information relating to 44 separate federal programs that could support cities and states in reducing the impacts of urban heat. While federal funding sources are often dependent on appropriations, this list may be useful for finding federal funding opportunities for climate-related work. <http://www.georgetownclimate.org/files/report/Federal%20Funding%20Compendium%20for%20Urban%20Heat%20Adaptation.pdf>

[Tribal Climate Change Guide to Funding, Science, Programs and Adaptation Plans](#)

This sortable spreadsheet can help tribes find potential funding sources and other resources. Maintained by University of Oregon. <http://tribalclimateguide.uoregon.edu/>

Kresge Environment Program

The Kresge Foundation Environment Program seeks to help communities build resilience in the face of climate change.

They invest in climate resilience through two primary strategies:

1. Accelerating place-based innovation through support to efforts that are anchored in cities and have a strong potential to serve as models.
2. Building the climate-resilience field by supporting activities to disseminate and bring to scale promising climate-resilience approaches. <http://kresge.org/programs/environment>

Possible Funding

[Quadratuc Cares 'Energize The Environment' Grant Program](#)

This program offers two \$3,500 grants per year, one each in the spring and fall, to an individual or group implementing a program designed to benefit the environment. Examples of projects the program may fund include trail building or restoration, community environmental educational projects, and youth educational engagement events. Proposers write and submit a 1000-1600 word essay to apply for the grants. Entries for the fall grant are due on June 30th; entries for the spring grant are due October 30th. <https://www.quadratuc.com/page/quadratuc-cares-grant-program>

[Wildlife Conservation Society's Climate Adaptation Fund](#)

This fund supports projects that demonstrate effective interventions for wildlife adaptation to climate change. <http://wcsclimateadaptationfund.org/>

[Climate Solutions University](#)

The Climate Solutions University aids rural communities by offering training, expertise, and support in climate adaptation planning through a peer-learning network. In the past, the organization has offered two distance-learning programs: the Climate Adaptation Plan Development Program focuses on forest and water resource resilience, and the Climate Adaptation Plan Implementation Program supports participants in moving the plan into action. <http://www.mfpp.org/csu/>

[Open Space Institute Resilient Landscape Initiative](#)

The Resilient Landscapes Initiative, supported by the Doris Duke Charitable Foundation, offers two types of grants for specified locations in the eastern United States. The group's Capital Grants help land trusts and public agencies increase the conservation of resilient landscapes in areas that represent critical climate priorities. The group's Catalyst Grants help land trusts and public agencies build the knowledge base of key audiences and advance the practical application of climate science. <https://www.openspaceinstitute.org/funds/resilient-landscapes-funds>

S e c t i o n

A1

Appendix 1 Local Climate Risks to the Environment

Click to
Return to TOC

Local Climate Risks To The Environment

Climate change projections for the Community represent potential risks. The types of risks can be organized into risks to the environment and ecosystems and risks to the population. The following is an overview of the potential risks posed by climate change for the region:

Warmer summers

Pollution control risks:

Wildfires may lead to soil erosion

Habitat risks:

Greater evaporation

Lower groundwater tables

Switching public water supply between surface and ground-water sources may affect the integrity of water bodies

Fish Wildlife and Plant risks:

Species that won't tolerate warmer summers may die/migrate

Biota at the southern limit of their range may disappear from ecosystems

Species may be weakened by heat and become out-competed

Essential food sources may die off or disappear, affecting the food web

Species may need to consume more water as temperature rises

Recreation and Public Water Supply Risks:

More people using water for recreation may raise the potential for pathogen exposure

Warmer temperatures may drive greater water demand

Evaporation losses from reservoirs and groundwater may increase

Warmer winters

Pollution Control risks:

Increased fertilizer and pesticide use due to longer growing season.

Warmer winters result in more ice and freeze thaw resulting in greater chloride application and more permanent damage to local water bodies due to increased salt concentrations.

Habitat risks:

Less snow, more rain may change the runoff/infiltration balance; base flow in streams may change

Changing spring runoff with varying snow.

Fish Wildlife and Plant risks:

Species that used to migrate away may stay all winter and species that once migrated through may stop and stay

Pests may survive winters that used to kill them and invasive species may move into places that used to be too cold. Some plants need a "setting" cold temperature and may not receive it consistently.

A longer growing season may lead to an extra reproductive cycle.

Food supplies and bird migrations may be mistimed.

Recreation and Public Water Supply Risks:

Summer water supplies that depend on winter snow pack may be reduced or disappear.

Cold places may see more freeze/thaw cycles that can affect infrastructure.

Warmer water

Pollution Control risks:

Temperature criteria for discharges may be exceeded (thermal pollution).

Warmer temperatures may increase toxicity of pollutants.

Higher solubility may lead to higher concentration of pollutants.

Water may hold less dissolved oxygen.

Higher surface temperatures may lead to stratification.

Greater algae growth may occur.

Parasites, bacteria may have greater survival or transmission.

Habitat risks:

Warmer water may lead to greater likelihood of stratification.

Desired fish may no longer be present.

Warmer water may promote invasive species or disease.

Fish Wildlife and Plant risks:

Newly invasive species may appear.

Habitat may become unsuitably warm, for a species or its food.

Heat may stress immobile biota.

Oxygen capacity of water may drop.

Local Climate Risks To The Environment

Some fish reproduction may require cold temperatures; other reproductive cycles are tied to water temperature
Parasites and diseases are enhanced by warmer water

Fish resource food harvesting, Recreation, and Public Water Supply Risks:

Harmful algal blooms may be more likely
Fishing seasons and fish may become misaligned
Desired recreational fish may no longer be present
Invasive plants may clog creeks and waterways
Changes in treatment processes may be required
Increased growth of algae and microbes may affect drinking water quality

Increased drought

Pollution Control risks:

Critical-low-flow criteria for discharging may not be met
Pollutant concentrations may increase if sources stay the same and flow diminishes
Pollution sources may build up on land, followed by high-intensity flushes

Habitat risks:

Groundwater tables may drop
Base flow in streams may decrease
Stream water may become warmer
Increased human use of groundwater during drought may reduce stream baseflow
New water supply reservoirs may affect the integrity of freshwater streams

Fish Wildlife and Plant risks:

Species may not tolerate a new drought regime (birch family)
Native habitat may be affected if freshwater flow in streams is diminished or eliminated

Recreation and Public Water Supply Risks:

Freshwater flows in streams may not support recreational uses
Groundwater tables may drop
Maintaining passing flows at diversions may be difficult

Increased storminess

Pollution Control risks:

Combined sewer overflows may increase
Treatment plants may go offline during intense floods
Streams may see greater erosion and scour
Urban areas may be subject to more floods
Flood control facilities (e.g., detention basins, manure management) may be inadequate
High rainfall may cause septic systems to fail

Habitat risks:

The number of storms reaching an intensity that causes significant problems may increase
Stronger storms may cause more intense flooding and runoff
Turbidity of surface waters may increase
Increased intensity of precipitation may yield less infiltration
Stream erosion may lead to high turbidity and greater sedimentation
Lower pH from NPS pollution may affect target species

Fish Wildlife and Plant risks:

Greater soil erosion may increase turbidity and decrease water clarity
Greater soil erosion may increase sediment deposition in estuaries, with consequences for benthic species

Recreation and Public Water Supply Risks:

More frequent or more intense storms may decrease recreational opportunities
Greater nonpoint source pollution may impair recreation
Water infrastructure may be vulnerable to flooding
Flood waters may raise downstream turbidity and affect water quality

(Source: USEPA “Being Prepared for Climate Change A Workbook for Developing Risk-Based Adaptation Plans”)

Section A2

Appendix 2
Climate Adaptive
Tree Species
(A document by the
National Institute of
Applied Climate Sci-
ence of the USDA
Forest Service)

APPENDIX 7

TREE SPECIES VULNERABILITY

Overall vulnerability of trees present in the Chicago Wilderness region and those being considered for planting was assessed by combining information about projected changes in habitat suitability and adaptive capacity (see Appendix 6 and Table 23).

For species where information was available from the Tree Atlas, the following matrix was used to determine vulnerability:

Projected Change in Habitat Suitability (Tree Atlas)	Adapt Class		
	Low	Medium	High
Decrease (both scenarios)	high	moderate-high	moderate
Mixed results	moderate-high	moderate	low-moderate
No effect	moderate-high	low-moderate	low
Increase (both scenarios)	moderate	low-moderate	low

For species where no model information was available, the following matrix was used to determine vulnerability:

Hardiness/Heat Zone Effect	Adapt Class		
	Low	Medium	High
Negative	high	moderate-high	moderate
No effect	moderate-high	low-moderate	low
Positive	moderate	low-moderate	low

Confidence ratings were generally based on the level of evidence to support the vulnerability rating and the level of agreement among that evidence (Intergovernmental Panel on Climate Change 2014). Reliable model projections that tended to agree across climate scenarios resulted in higher confidence ratings. If adaptive capacity was high and model projections were favorable for that species, this also resulted in a higher confidence rating. If model results were not available, confidence was higher if there was sufficient information on the adaptive capacity of the species and the hardiness and heat zones to make a determination. Species for which there was very little information on adaptive capacity and no model projections received a low vulnerability rating.

LITERATURE CITED

Intergovernmental Panel on Climate Change. 2014. **Climate change 2014: impacts, adaptation, and vulnerability. Part A: Global and sectoral aspects.** Contribution of Working Group II to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change [Field, C.B.; Barros, V.R.; Dokken, D.J.; Mach, K.J.; Mastrandrea, M.D.; Bilir, T.E.; Chatterjee, M.; Ebi, K.L.; Estrada, Y.O.; Genova, R.C.; Girma, B.; Kissel, E.S.; Levy, A.N.; MacCracken, S.; Mastrandrea, P.R.; White, L.L., eds.]. Cambridge, UK and New York, NY: Cambridge University Press. 1132 p.

Table 23.—Overall vulnerability, and associated information, for tree species in the Chicago Wilderness region

Common name	Origin	Estimated number of trees	Planted Adapt Class	Natural Adapt Class ¹	Projected change: Tree Atlas	Heat/Hardiness zone effect	Overall vulnerability	Confidence
Accolade® elm	cultivar	0	high	n/a	not modeled	positive	low	medium
'Accolade' flowering cherry	cultivar	0	medium	n/a	not modeled	positive	low-moderate	low-medium
Allegheny serviceberry	native	0	high	high	not modeled	no effect	low	low-medium
American basswood (American linden)	native	822,780	medium	medium	no change	not evaluated	low-moderate	medium
American beech	native	0	medium	medium	mixed results	not evaluated	moderate	medium
American elm	native	5,363,030	medium	high	increase	not evaluated	low-moderate	medium-high
American hornbeam	native	26,130	high	high	increase	not evaluated	low	high
American plum	native	150,100	medium	medium	mixed results	not evaluated	moderate	low-medium
American sycamore	native	7,970	medium	medium	increase	not evaluated	low-moderate	medium
American witchhazel	native	206,360	medium	high	not modeled	no effect	low-moderate	low
Amur cherry	nonnative	0	high	n/a	not modeled	•	low	low
Amur corktree	invasive	7,970	medium	high	not modeled	no effect	low-moderate	low
Amur honeysuckle	Invasive	3,370,400	high	high	not modeled	no effect	low	low
Amur maackia	nonnative	744,480	high	n/a	not modeled	negative	moderate	low
Amur maple	invasive	36	medium	n/a	not modeled	negative	moderate-high	low
Apple serviceberry	nonnative	0	high	n/a	not modeled	negative	moderate	low
Apple/crabapple species	cultivar	1,724,980	medium	n/a	not modeled	no effect	moderate	low
Austrian pine	nonnative	983,160	medium	n/a	not modeled	positive	low-moderate	low
Autumn-olive	invasive	228,040	medium	high	not modeled	no effect	low-moderate	low
Baldcypress	native	26,030	high	n/a	not modeled	positive	low	medium
Balsam fir	native	205,390	medium	n/a	not modeled	negative	high	medium
Bigtooth aspen	native	0	low	high	decrease	not evaluated	high	medium-high
Bitternut hickory	native	186,540	medium	medium	increase	not evaluated	low-moderate	medium-high
Black cherry	native	7,737,030	low	medium	decrease	not evaluated	high	medium-high
Blackgum	native	0	high	high	increase	not evaluated	low	high
Blackhaw	native	68,650	high	high	not modeled	no effect	low	low
Black Hills spruce	native	0	medium	n/a	not modeled	negative	moderate-high	low
Black locust	native	2,972,090	medium	high	increase	not evaluated	low	high
Black maple	native	69,910	medium	high	not modeled	no effect	moderate	low
Black oak	native	53,670	medium	high	no change	not evaluated	low	medium
Black walnut	native	2,469,240	medium	medium	increase	not evaluated	moderate	medium
Black willow	native	44,830	low	low	increase	not evaluated	moderate	medium
Blue spruce	native	1,107,240	medium	n/a	not modeled	no effect	moderate	low
Boxelder	native	8,597,890	medium	high	increase	not evaluated	low	high
Bur oak	native	1,603,410	high	high	no change	not evaluated	low	medium-high
Callery pear	invasive	257,690	medium	n/a	not modeled	positive	low-moderate	low
Cherry plum	nonnative	157,440	medium	n/a	not modeled	positive	low-moderate	low
Chestnut oak	native	0	high	high	not modeled	no effect	low	low
Chinese catalpa	nonnative	0	medium	n/a	not modeled	•	moderate	low
Chinese chestnut	nonnative	11,090	medium	n/a	not modeled	no effect	moderate	low
Chinese fringetree	nonnative	0	high	n/a	not modeled	positive	low	low
Chinese juniper	nonnative	0	high	n/a	not modeled	no effect	low	low
Chinkapin oak	native	79,770	medium	medium	new habitat	not evaluated	moderate	medium
Cockspur hawthorn	native	320,200	high	n/a	not modeled	negative	moderate	low
Common chokecherry	native	114,910	medium	medium	decrease	not evaluated	moderate-high	low-medium
Common elderberry	native	197,340	medium	high	not modeled	no effect	low-moderate	low
Common hackberry	native	1,020,060	high	high	increase	not evaluated	low	high

(Continued)

Table 23.—(Continued) Overall vulnerability, and associated information, for tree species in the Chicago Wilderness region

Common name	Origin	Estimated number of trees	Planted Adapt Class	Natural Adapt Class ¹	Projected change: Tree Atlas	Heat/Hardiness zone effect	Overall vulnerability	Confidence
Common lilac	nonnative	109,050	medium	n/a	not modeled	no effect	moderate	low
Common pear	nonnative	266,140	low	n/a	not modeled	no effect	moderate-high	low
Common persimmon	native	0	high	n/a	new habitat	not evaluated	low	high
Cornelian cherry dogwood	cultivar	11,090	medium	n/a	not modeled	no effect	moderate	low
Crimean linden	nonnative	0	high	n/a	not modeled	negative	moderate	low
Cucumbertree	native	0	medium	n/a	not modeled	no effect	moderate	low
Dawn redwood	nonnative	0	medium	n/a	not modeled	positive	moderate	low
'Discovery' elm	cultivar	0	high	n/a	not modeled	•	low	low
Douglas-fir	native	108,410	low	n/a	not modeled	negative	high	low
Downy serviceberry	native	57,460	high	high	not modeled	no effect	low	low
Eastern cottonwood	native	2,198,060	low	medium	increase	not evaluated	moderate	high
Eastern hemlock	native	268,660	low	n/a	not modeled	no effect	high	low-medium
Eastern hophornbeam (ironwood)	native	602,120	high	high	mixed results	not evaluated	low-moderate	medium
Eastern redbud	native	110,420	medium	high	new habitat	not evaluated	low-moderate	medium-high
Eastern redcedar	native	563,500	high	medium	increase	not evaluated	low-moderate	medium-high
Eastern wahoo	native	46,320	medium	medium	not modeled	•	moderate	low
Eastern white pine	native	1,525,970	low	n/a	not modeled	negative	high	high
European alder	invasive	382,610	medium	n/a	not modeled	positive	moderate-high	low
European beech	nonnative	20,240	medium	high	not modeled	no effect	low-moderate	low
European buckthorn	invasive	44,281,470	high	n/a	not modeled	no effect	low	low
European filbert	nonnative	17,440	medium	n/a	not modeled	no effect	moderate	low
European hornbeam	nonnative	99,760	high	n/a	not modeled	negative	low	low
European larch	nonnative	0	medium	n/a	not modeled	negative	moderate-high	low
European mountain-ash	nonnative	0	high	n/a	not modeled	positive	moderate	low
European smoketree	nonnative	13,070	high	high	increase	not evaluated	low	low
Flowering dogwood	native	81,590	medium	n/a	not modeled	no effect	low-moderate	medium-high
Freeman maple	cultivar	280,470	high	n/a	not modeled	•	low	low-medium
'Frontier' elm	cultivar	0	high	high	not modeled	no effect	low	low
Glossy buckthorn	invasive	500,900	high	medium	not modeled	negative	low	low
Gray alder	native	0	medium	medium	not modeled	negative	moderate-high	low
Gray birch	native	145,590	low	high	not modeled	no effect	high	low
Gray dogwood	native	68,010	medium	medium	increase	not evaluated	moderate	low
Green ash	native	8,657,000	medium	n/a	not modeled	negative	moderate	medium-low
'Harvest Gold' linden	cultivar	0	medium	n/a	not modeled	positive	moderate-high	low
Hedge maple	nonnative	0	high	n/a	not modeled	•	low	low
Heritage® oak	cultivar	0	high	n/a	not modeled	positive	low	low
Higan cherry	cultivar	0	medium	high	increase	not evaluated	low-moderate	low
Honeylocust	native	997,510	medium	n/a	not modeled	no effect	low-moderate	medium-high
Horse chestnut	nonnative	40,250	medium	n/a	mixed results	not evaluated	moderate	low
Jack pine	native	25,720	low	n/a	not modeled	no effect	high	medium
Japanese maple	nonnative	36,060	medium	n/a	not modeled	negative	moderate	low
Japanese red pine	nonnative	11,090	low	n/a	not modeled	negative	high	low
Japanese tree lilac	nonnative	19,020	high	n/a	not modeled	positive	moderate	low
Japanese zelkova	nonnative	11,090	high	n/a	not modeled	no effect	low	low
Katsura tree	nonnative	11,090	low	medium	new habitat	not evaluated	high	low
Kentucky coffeetree	native	33,380	high	n/a	not modeled	positive	low	medium-high
Korean mountain-ash	nonnative	0	medium	n/a	not modeled	•	low-moderate	low

(Continued)

Table 23.—(Continued) Overall vulnerability, and associated information, for tree species in the Chicago Wilderness region

Common name	Origin	Estimated number of trees	Planted Adapt Class	Natural Adapt Class ¹	Projected change: Tree Atlas	Heat/Hardiness zone effect	Overall vulnerability	Confidence
Korean Sun™ pear	nonnative	0	high	n/a	not modeled	positive	low	low
Kousa dogwood	nonnative	0	high	n/a	not modeled	positive	low	low
Leatherleaf viburnum	nonnative	17,440	high	n/a	not modeled	no effect	low	low
Littleleaf linden	nonnative	789,950	high	n/a	not modeled	•	low	low
London planetree	nonnative	0	medium	n/a	not modeled	no effect	moderate	low
Maidenhair tree	nonnative	199,650	high	n/a	not modeled	no effect	low	low
Miyabe maple	cultivar	0	high	medium	new habitat	not evaluated	low	low
Mockernut hickory	native	6	high	n/a	not modeled	no effect	low-moderate	medium
Morden hawthorn	cultivar	121,430	medium	high	not modeled	no effect	moderate	low
Nannyberry	native	69,310	high	low	not modeled	no effect	low	low
Northern catalpa	native	59,440	low	medium	decrease	not evaluated	moderate-high	low
Northern pin oak (Hill's oak)	native	20,240	medium	high	mixed results	not evaluated	high	high
Northern red oak	native	3,087,850	high	medium	not modeled	negative	low-moderate	medium
Northern white-cedar (arborvitae)	native	2,457,220	medium	high	not modeled	negative	moderate-high	low
Norway maple	invasive	1,858,800	high	n/a	not modeled	no effect	moderate	low
Norway spruce	nonnative	377,510	medium	low	new habitat	not evaluated	moderate	low
Ohio buckeye	native	64,160	medium	n/a	not modeled	no effect	moderate	medium
Oriental spruce	nonnative	0	medium	high	increase	not evaluated	moderate	low
Osage-orange	native	80,910	high	medium	not modeled	no effect	low	high
Pacific Sunset® maple	cultivar	0	high	medium	increase	not evaluated	low	low
Pagoda dogwood	native	34,590	medium	medium	decrease	not evaluated	moderate	low
Paper birch	native	352,400	medium	n/a	not modeled	positive	high	high
Peach	nonnative	107,320	medium	low	not modeled	no effect	low-moderate	low
Peachleaf willow	native	77,720	low	n/a	new habitat	not evaluated	moderate-high	low
Pecan	native	0	low	n/a	not modeled	negative	moderate	medium
Peking lilac	nonnative	0	high	high	increase	not evaluated	moderate	medium
Pignut hickory	native	0	medium	medium	not modeled	•	low-moderate	medium
Pin cherry	native	40,550	low	medium	increase	not evaluated	moderate-high	low
Pin oak	native	360,430	medium	n/a	not modeled	•	low-moderate	medium
'Prairie Gem' Ussurian pear	cultivar	0	high	high	not modeled	no effect	low	low
Prickly ash	native	207,940	low	high	not modeled	positive	low	low
Privet	invasive	7,940	medium	n/a	not modeled	•	low-moderate	low
'Prospector' Wilson elm	cultivar	0	medium	medium	not modeled	no effect	moderate	low
Pussy willow	native	55,420	low	medium	decrease	not evaluated	moderate	low
Quaking aspen	native	230,070	low	high	increase	not evaluated	high	high
Red maple	native	340,290	medium	medium	increase	not evaluated	low-moderate	medium-high
Red mulberry	native	66,440	medium	n/a	decrease	not evaluated	low-moderate	medium-high
Red pine	native	15,010	low	medium	increase	not evaluated	high	high
River birch	native	552,800	medium	n/a	not modeled	•	low-moderate	medium-high
Robusta poplar	cultivar	0	medium	n/a	not modeled	positive	moderate	low
Rose-of-Sharon	nonnative	77,240	high	high	not modeled	no effect	low	low
Russian-olive	invasive	54,970	high	n/a	not modeled	no effect	low	low
Sargent cherry	cultivar	80,070	medium	n/a	increase	not evaluated	moderate	low
Sassafras	native	47,370	medium	n/a	not modeled	positive	low-moderate	medium-high
Saucer magnolia	cultivar	26,030	high	high	decrease	not evaluated	low	low
Scarlet oak	native	0	high	n/a	not modeled	positive	moderate	low-medium
Scholar tree	nonnative	0	high	n/a	not modeled	negative	low	low

(Continued)

Table 23.—(Continued) Overall vulnerability, and associated information, for tree species in the Chicago Wilderness region

Common name	Origin	Estimated number of trees	Planted Adapt Class	Natural Adapt Class ¹	Projected change: Tree Atlas	Heat/Hardiness zone effect	Overall vulnerability	Confidence
Scotch pine	nonnative	23,500	medium	n/a	not modeled	no effect	moderate-high	low
Serbian spruce	nonnative	78,160	medium	high	increase	not evaluated	moderate	low
Shagbark hickory	native	1,711,410	medium	n/a	not modeled	no effect	low-moderate	medium
Shantung maple	nonnative	0	high	medium	increase	not evaluated	low	low
Shellbark hickory	native	9,750	low	medium	increase	not evaluated	moderate	low-medium
Shingle oak	native	23,500	high	medium	not modeled	positive	low-moderate	medium
Shumard oak	native	0	high	high	not modeled	no effect	low-moderate	low
Siberian elm	invasive	2,240,590	medium	n/a	not modeled	•	low-moderate	low
Silver linden	nonnative	0	medium	high	increase	not evaluated	moderate	low
Silver maple	native	3,209,940	medium	medium	increase	not evaluated	low-moderate	medium-high
Slippery elm	native	453,470	medium	n/a	not modeled	positive	low-moderate	medium-high
Smoothleaf elm	nonnative	0	low	n/a	not modeled	positive	moderate	low
'Snow Goose' cherry	cultivar	0	high	high	not modeled	no effect	low	low
Staghorn sumac	native	0	medium	n/a	not modeled	no effect	low-moderate	low
Star magnolia	nonnative	69,320	medium	high	mixed results	not evaluated	moderate	low
Sugar maple	native	4,457,170	medium	n/a	new habitat	not evaluated	moderate	medium
Sugarberry	native	0	medium	n/a	not modeled	no effect	low-moderate	medium
Swamp white oak	native	104,750	high	n/a	increase	not evaluated	low-moderate	medium-high
Sweetgum	native	17,090	medium	n/a	not modeled	positive	low-moderate	low-medium
Sycamore maple	nonnative	0	medium	high	not modeled	positive	low-moderate	low
Tree of heaven	invasive	1,830,940	high	n/a	not modeled	no effect	low	low
Triumph™ elm	cultivar	0	high	n/a	not modeled	negative	low	low
Turkish hazelnut	nonnative	0	high	n/a	not modeled	no effect	moderate	low
Washington hawthorn	native	23,100	medium	n/a	not modeled	no effect	moderate	low
Weeping willow	nonnative	11,090	medium	medium	increase	not evaluated	moderate	low
White ash	native	4,025,410	low	n/a	not modeled	negative	moderate-high	low-medium
White fir	native	0	medium	n/a	not modeled	no effect	moderate-high	low
White fringetree	nonnative	0	high	high	not modeled	no effect	low	low
White mulberry	invasive	1,584,250	medium	high	decrease	not evaluated	low-moderate	low
White oak	native	1,857,380	medium	medium	decrease	not evaluated	moderate-high	low-medium
White poplar	nonnative	95,600	medium	n/a	not modeled	no effect	moderate	low
White spruce	native	1,786,850	medium	n/a	decrease	not evaluated	high	high
Willow oak	native	0	high	n/a	not modeled	positive	low	low
Winged burningbush	invasive	148,650	high	high	not modeled	no effect	low	low
'Winter King' green hawthorn	cultivar	0	high	n/a	not modeled	negative	moderate	low
Yellow buckeye	native	0	medium	n/a	not modeled	no effect	moderate	low
Yellow-poplar (tuliptree)	native	17,440	low	high	increase	not evaluated	moderate	low-medium
Yellowwood	native	0	high	n/a	not modeled	no effect	low	low

¹ The designation "n/a" means that this tree does not occur outside of cultivated settings in this area.

A "0" indicates that no trees of this species or cultivar were detected in the most recent tree census (Nowak et al. 2013).

• indicates insufficient information.

Section A3

Appendix 3
Data References and
Resources

Data References and Resources

Section 1 Introduction

State of Minnesota, Department of Natural Resources
https://www.dnr.state.mn.us/climate/climate_change_info/index.html
http://glisa.umich.edu/media/files/Minn-StPaulMN_Climatology.pdf
US Climate Resilience Toolkit
<https://toolkit.climate.gov/>
Metropolitan Council, Local Planning Handbook
<https://lphonline.metc.state.mn.us/commportal>
Intergovernmental Panel on Climate Change
<http://www.ipcc.ch/>
NOAA National Centers for Environmental Information
<https://www.ngdc.noaa.gov/>
NASA
https://www.nasa.gov/mission_pages/noaa-n/climate/climate_weather.html

Section 2 Climate Change in the Midwest

US Climate Resilience Toolkit
<https://toolkit.climate.gov/>
US National Climate Assessment
<https://nca2014.globalchange.gov/>

Section 3 Climate Change in Indiana

Midwest Economic Policy Institute "Climate Change and Its Impact on Infrastructure Systems in Indiana"
<https://midwestepi.files.wordpress.com/2018/06/indiana-infrastructure-and-climate-change-final.pdf>
NOAA National Centers for Environmental Information; State of Indiana Summary
<https://statesummaries.ncics.org/chapter/in/>
Indiana's Multi-Hazard Mitigation Plan, Impacts of climate change on the state of Indiana
<https://storymaps.arcgis.com/stories/e8c997b2aaab42a6bf8af6bbc13d9908>
Purdue University, Indiana State Climate Office
<https://ag.purdue.edu/indiana-state-climate/>
"Hoosiers' Health in a Changing Climate: A Report from the Indiana Climate Change Impacts Assessment"
<https://docs.lib.psu.edu/healthtr/1/>
University of Indiana Hoosier Resilience Index
<https://hri.eri.iu.edu/>
The Indiana Climate Change Impacts Assessment, Purdue University
<https://ag.purdue.edu/indianaclimate/>
Indiana's Past and Future Climate: A Report from the Indiana Climate Change Impacts Assessment
<https://ag.purdue.edu/indianaclimate/indiana-climate-report/>
US Climate Resilience Toolkit
<https://toolkit.climate.gov/>

US National Climate Assessment

<https://nca2014.globalchange.gov/>
Minnesota Public Radio:
<https://www.mprnews.org/story/2015/02/02/climate-change-primer>
US EPA (January 2017 Snapshot)
<https://19january2017snapshot.epa.gov/climatechange.html>
<https://www.epa.gov/sites/production/files/2016-09/documents/climate-change-mn.pdf>
Indiana Climate Change Assessment: for Policymakers
https://ag.purdue.edu/indianaclimate/wp-content/uploads/2019/10/Issue-brief_INCCIA_1019.pdf

Section 4 Local Climate Change

"Hoosiers' Health in a Changing Climate: A Report from the Indiana Climate Change Impacts Assessment"
<https://docs.lib.psu.edu/healthtr/1/>
University of Indiana Hoosier Resilience Index
<https://hri.eri.iu.edu/>
The Indiana Climate Change Impacts Assessment, Purdue University
<https://ag.purdue.edu/indianaclimate/>
Indiana's Past and Future Climate: A Report from the Indiana Climate Change Impacts Assessment
<https://ag.purdue.edu/indianaclimate/indiana-climate-report/>
NOAA National Centers for Environmental Information
<https://www.ncdc.noaa.gov/stormevents/choosedates.jsp?statefips=27%2CMINNESOTA>
University of Michigan, Climate Center
<http://graham-maps.miserver.it.umich.edu/ciat/home.xhtml>
US Climate Resilience Toolkit, Climate Explorer
<https://toolkit.climate.gov/climate-explorer2/>
Minnesota Public Radio:
<https://www.mprnews.org/story/2015/02/02/climate-change-primer>
US Climate Resilience Toolkit
<https://nca2014.globalchange.gov/report/our-changing-climate/heavy-downpours-increasing#tab2-images>
US National Climate Assessment
<https://nca2014.globalchange.gov/report/our-changing-climate/heavy-downpours-increasing#statement-16556>
Environment Minnesota Research and Policy Center
<https://environmentminnesota.org/sites/environment/files/reports/When%20It%20Rains,%20It%20Pours%20vMN.pdf>
Union of Concerned Scientists
<http://www.climatehotmap.org/global-warming-locations/minneapolis-st-paul-mn-usa.html>

Local Climate Risks To The Environment

DOE Databook

<http://www.asicontrols.com/wp-content/uploads/2014/05/11.jpg>

Section 5 Community on The Move

University of Michigan, Climate Center

<http://graham-maps.miserver.it.umich.edu/ciat/home.xhtml>

Indiana's Past and Future Climate: A Report from the Indiana Climate Change Impacts Assessment

<https://ag.purdue.edu/indianaclimate/indiana-climate-report/>

Section 6 Climate Risk to The Population

National Climate Assessment

<https://nca2014.globalchange.gov/highlights/report-findings/human-health>

US Global Change Research Program

<https://health2016.globalchange.gov/populations-concern>

Centers for Disease Control and Prevention

<https://www.cdc.gov/climateandhealth/brace.htm>

American Public Health Association

<http://thenationshealth.aphapublications.org/content/46/9/1.1>

Hoosier Health in a Changing Climate

https://ag.purdue.edu/indianaclimate/wp-content/uploads/2018/06/INCCIA_Health_04162018_reduced.pdf

Section 7 Climate Impact Multipliers

Lawrence Berkeley National Laboratory

<https://heatisland.lbl.gov/>

Healthy City's Lab of the Indiana University's School of Informatics, Computing, and Engineering

<http://healthycities.sice.indiana.edu/sensor/index.html>

World Resources Institute, Aqueduct Water Risk Atlas

<http://www.wri.org/applications/maps/aqueduct-atlas/#x=8.00&y=0.44&s=ws!20!28!c&t=waterrisk&w=def&g=0&i=BWS-16!WSV-4!SV-2!HFO-4!DRO-4!STOR-8!GW-8!WRI-4!ECOS-2!MC-4!WCG-8!ECOV-2!&tr=ind-1!prj-1&l=3&b=terrain&m=group>

FEMA

<https://msc.fema.gov/portal/search>

National Flood Services

<http://www.floodtools.com/Map.aspx>

Section 8 Climate Resilience Indicators

United States Census Bureau

<https://factfinder.census.gov/faces/nav/jsf/pages/index.xhtml>

Data USA

<https://datausa.io/>

County Health Rankings & Roadmaps Program

<http://www.countyhealthrankings.org/app/minnesota/2017/overview>

US EPA Environmental Justice Screen

<https://ejscreen.epa.gov/mapper/>

Centers for Disease Control

<https://svi.cdc.gov/map.aspx?txtzipcode=55428&btnzipcode=Submit>

Statistical Atlas

<https://statisticalatlas.com/United-States/Overview>

South Central Indiana Housing Opportunities

<http://www.bhaindiana.net/wp-content/uploads/2016/10/SCIHO-Bloomington-Community-Housing-Needs-Assessment-Sept-2016.pdf>

Center for Neighborhood Technology H+T Index

<https://htaindex.cnt.org/>

Center for Neighborhood Technology AllTransit

<https://www.cnt.org/tools/alltransit> Walkscore

<https://www.walkscore.com/>

The Trust For Public Land

<https://www.tpl.org/parkscore>

Section 9 Vulnerable Populations

United States Census Bureau

Census 2011-2015 American Community Survey 5-Year Estimates

<https://factfinder.census.gov/faces/nav/jsf/pages/index.xhtml>

United States Census Bureau, Quick Facts Table

<https://www.census.gov/quickfacts/fact/table/US/PST045217>

Data USA

<https://datausa.io/>

USDA Economic Research Service, Food Atlas

<https://www.ers.usda.gov/data-products/food-access-research-atlas/go-to-the-atlas/>

Center for Neighborhood Technology H+T Index

<https://htaindex.cnt.org/>

See also references and resources for Section 6 Climate Risk to The Population

Local Climate Risks To The Environment

Section 10 Findings

Deep Root, Fiona Watt and Bram Gunther, New York City

Department of Parks

<http://www.deeproot.com/blog/blog-entries/tree-cover-how-does-your-city-measure-up>

Project Sunroof

<https://www.google.com/get/sunroof/data-explorer/>

NOAA National Centers for Environmental Information

<https://www.ncdc.noaa.gov/stormevents/>

See also references and resources for Section 6 Climate

Risk to The Population

See also references and resources for Section 7 Climate

Impact Multipliers

See also references and resources for Section 8 Climate

Resilience Indicators

See also references and resources for Section 9 Vulnerable

Populations

Section A4

Appendix 4

Glossary of Climate Adaptation and Vulnerability Terms

Glossary of Climate Adaptation and Vulnerability Terms

Term	Definition	Example
Adaptation	The process of adjusting to new (climate) conditions in order to reduce risks to valued assets.	Relocating buildings out of flood plains or further inland from rising seas are examples of physical <i>adaptations</i> . Using smaller amounts of water during times of drought is an example of behavioral adaptation.
Adaptive capacity	The ability of a person, asset, or system to adjust to a hazard, take advantage of new opportunities, or cope with change.	Increasing the diameter of culverts that channel stormwater away from assets enhances the <i>adaptive capacity</i> of places that face flooding from increasingly heavy rainfalls.
Assets	People, resources, ecosystems, infrastructure, and the services they provide. Assets are the tangible and intangible things people or communities value.	The infrastructure of roads, airports, and seaports are <i>assets</i> . The service of supply chain stability (supported by transportation infrastructure) is an asset. A community's local "charm" is an example of an intangible asset.
Climate stressor	A condition, event, or trend related to climate variability and change that can exacerbate hazards.	Increasing frequency and intensity of drought conditions can be a <i>climate stressor</i> for forests and crops. Rising sea level is another climate stressor.
Consequence	A subsequent result (usually negative) that follows from damage to or loss of an asset. Quantifying potential consequences is an important part of determining risk.	The destruction of commercial buildings in a flood event could result in the <i>consequence</i> of reduced tax revenues for a community.
Ecosystem services	Benefits that humans receive from natural systems.	Humans draw food and fiber from ecosystems. Ecosystems also filter water and air, sequester carbon, and provide recreation and inspiration for people.
Exposure	The presence of people, assets, and ecosystems in places where they could be adversely affected by hazards.	Homes and businesses along low-lying coasts are <i>exposed</i> to coastal flooding from storms.
Hazard	An event or condition that may cause injury, illness, or death to people or damage to assets.	Extended periods of excessive heat are likely to be an increasingly common <i>hazard</i> in the coming decades.
Impacts	Effects on natural and human systems that result from hazards. Evaluating potential impacts is a critical step in assessing vulnerability.	In the West, the destruction of homes by wildfires is among the <i>impacts</i> of hotter and drier conditions and earlier snowmelt.

Mitigation	Processes that can reduce the amount and speed of future climate change by reducing emissions of heat-trapping gases or removing them from the atmosphere.	Carbon-neutral energy sources such as solar and wind represent <i>mitigation</i> efforts.
Non-climate stressor	A change or trend unrelated to climate that can exacerbate hazards.	Altering drainage patterns and replacing open land with roads and buildings are <i>non-climate stressors</i> for flooding hazards. Population growth along exposed coasts is another non-climate stressor.
Probability	The likelihood of hazard events occurring. Probabilities have traditionally been determined from the historic frequency of events. With changing climate and the introduction of non-climate stressors, the probability of hazard events also changes.	Locations within a 100-year flood zone have a greater <i>probability</i> for a flood hazard than locations in the same region's 500-year flood zone.
Projections	Potential future climate conditions calculated by computer-based models of the Earth system. Projections are based on sets of assumptions about the future (scenarios) that may or may not be realized.	Climate <i>projections</i> indicate that if human emissions of heat-trapping gases continue increasing through 2100 (a scenario, or possible future), most locations will see substantial increases in average annual temperature (potential future conditions).
Resilience	The capacity of a community, business, or natural environment to prevent, withstand, respond to, and recover from a disruption.	Installation of backflow preventers in the stormwater systems of a coastal city increased their <i>resilience</i> to flooding from extreme high tides.
Risk	The potential total cost if something of value is damaged or lost, <u>considered together</u> with the likelihood of that loss occurring. Risk is often evaluated as the probability of a hazard occurring multiplied by the consequence that would result if it did happen.	Warehouses sited on a floodplain represent a higher <i>risk</i> for flooding when they are filled with products than when they are empty.
Sensitivity	The degree to which a system, population, or resource is or might be affected by hazards.	The yield of crops with a high <i>sensitivity</i> may be reduced in response to a change in daily minimum temperature during the pollination season.
Uncertainty	A state of incomplete knowledge. Uncertainty about future climate arises from the complexity of the climate system and the ability of models to represent it, as well as the inability to predict the decisions that society will make.	Though climate model projections are <i>uncertain</i> about how much precipitation will change in the future, they generally agree that wet places are likely to get wetter, and dry places are likely to get drier.
Vulnerability	The propensity or predisposition of assets to be adversely affected by hazards. Vulnerability encompasses exposure, sensitivity, potential impacts, and adaptive capacity.	Despite the thick walls of the aging lighthouse, its location on a barrier island and lack of resources to tie its foundations to bedrock made it <i>vulnerable</i> to shoreline erosion.

Prepared By:

2515 White Bear Ave, A8
Suite 177
Maplewood, MN 55109

Contact:

Ted Redmond
tredmond@palebluedot..llc